The Spectral Properties of the Strongly Coupled Sturm Hamiltonian of Eventually Constant Type

作者: Yan-Hui Qu

DOI: 10.1007/S00023-016-0462-0

关键词:

摘要: We study the spectral properties of Sturm Hamiltolian eventually constant type, which includes Fibonacci Hamiltonian. Let s be Hausdorff dimension spectrum. For V > 20, we show that restriction s-dimensional measure to spectrum is a Gibbs type measure; density states Markov measure. Based on fine structures these measures, both measures are exact dimensional; obtain asymptotic behaviors for optimal Holder exponent and As consequence, if frequency not silver number then big enough, establish strict inequalities between three characteristics. achieve them by introducing an auxiliary symbolic dynamical system applying thermodynamical multifractal formalisms almost additive potentials.

参考文章(42)
K. J. Falconer, Techniques in fractal geometry ,(1997)
William Yessen, David Damanik, Anton Gorodetski, The Fibonacci Hamiltonian arXiv: Spectral Theory. ,(2014) , 10.1007/S00222-016-0660-X
Luis Barreira, , Nonadditive thermodynamic formalism: Equilibrium and Gibbs measures Discrete and Continuous Dynamical Systems. ,vol. 16, pp. 279- 305 ,(2006) , 10.3934/DCDS.2006.16.279
De-Jun Feng, Wen Huang, Lyapunov Spectrum of Asymptotically Sub-additive Potentials Communications in Mathematical Physics. ,vol. 297, pp. 1- 43 ,(2010) , 10.1007/S00220-010-1031-X
Emiliano De Simone, Laurent Marin, Hyperbolicity of the trace map for a strongly coupled quasiperiodic Schrödinger operator Monatshefte für Mathematik. ,vol. 163, pp. 211- 235 ,(2011) , 10.1007/S00605-010-0270-4
Luis Barreira, Paulo Doutor, Almost additive multifractal analysis Journal de Mathématiques Pures et Appliquées. ,vol. 92, pp. 1- 17 ,(2009) , 10.1016/J.MATPUR.2009.04.006
Stellan Ostlund, Rahul Pandit, David Rand, Hans Joachim Schellnhuber, Eric D. Siggia, One-Dimensional Schrödinger Equation with an Almost Periodic Potential Physical Review Letters. ,vol. 50, pp. 1873- 1876 ,(1983) , 10.1103/PHYSREVLETT.50.1873