Cutting and independent stacking of intervals

作者: Paul Shields

DOI: 10.1007/BF01824799

关键词:

摘要: Methods of cutting and stacking intervals have been frequently used in ergodic theory to construct transformations with special properties. We show that for independent the partition into subintervals is a Markov partition. In particular, if resulting transformation mixing it must be Bernoulli shift.

参考文章(6)
D. S. Ornstein, Imbedding Bernoulli shifts in flows Springer Berlin Heidelberg. pp. 178- 218 ,(1970) , 10.1007/BFB0060654
Nathaniel A. Friedman, Introduction to ergodic theory Van Nostrand Reinhold. ,(1970)
N.A. Friedman, D.S. Ornstein, On isomorphism of weak Bernoulli transformations Advances in Mathematics. ,vol. 5, pp. 365- 394 ,(1970) , 10.1016/0001-8708(70)90010-1
N.A Friedman, On mixing, entropy, and generators Journal of Mathematical Analysis and Applications. ,vol. 26, pp. 512- 528 ,(1969) , 10.1016/0022-247X(69)90195-4
Donald Ornstein, Two Bernoulli shifts with infinite entropy are isomorphic Advances in Mathematics. ,vol. 5, pp. 339- 348 ,(1970) , 10.1016/0001-8708(70)90008-3
D. S., Patrick Billingsley, Ergodic Theory and Information Mathematics of Computation. ,vol. 20, pp. 459- ,(1966) , 10.2307/2003618