Anisotropic tight-binding model for localization

作者: Qiming Li , C. M. Soukoulis , E. N. Economou , G. S. Grest

DOI: 10.1103/PHYSREVB.40.2825

关键词:

摘要: The anisotropic tight-binding model, which is defined by a disordered Hamiltonian with transfer-energy-matrix element in the z direction, t, different than one x-y plane studied using finite-size scaling methods. dependence of mobility edge on strength anisotropy t (0\ensuremath{\le}t\ensuremath{\le}1) obtained for center band, E=0. Even very low-t values an appreciable amount disorder needed to localize E=0 state. These results are found be satisfactory agreement predictions potential-well analogy, coupled coherent-potential approximation.

参考文章(16)
E. Abrahams, P. W. Anderson, D. C. Licciardello, T. V. Ramakrishnan, Scaling Theory of Localization: Absence of Quantum Diffusion in Two Dimensions Physical Review Letters. ,vol. 42, pp. 673- 676 ,(1979) , 10.1103/PHYSREVLETT.42.673
Patrick A. Lee, T. V. Ramakrishnan, Disordered electronic systems Reviews of Modern Physics. ,vol. 57, pp. 287- 337 ,(1985) , 10.1103/REVMODPHYS.57.287
E. N. Economou, C. M. Soukoulis, Connection of localization with the problem of the bound state in a potential well Physical Review B. ,vol. 28, pp. 1093- 1094 ,(1983) , 10.1103/PHYSREVB.28.1093
E. N. Economou, C. M. Soukoulis, A. D. Zdetsis, Localized states in disordered systems as bound states in potential wells Physical Review B. ,vol. 30, pp. 1686- 1694 ,(1984) , 10.1103/PHYSREVB.30.1686
J L Pichard, G Sarma, Finite size scaling approach to Anderson localisation Journal of Physics C: Solid State Physics. ,vol. 14, ,(1981) , 10.1088/0022-3719/14/6/003
J L Pichard, G Sarma, Finite-size scaling approach to Anderson localisation. II. Quantitative analysis and new results Journal of Physics C: Solid State Physics. ,vol. 14, ,(1981) , 10.1088/0022-3719/14/21/004
A. MacKinnon, B. Kramer, One-Parameter Scaling of Localization Length and Conductance in Disordered Systems Physical Review Letters. ,vol. 47, pp. 1546- 1549 ,(1981) , 10.1103/PHYSREVLETT.47.1546
A. MacKinnon, B. Kramer, MacKinnon and Kramer Respond Physical Review Letters. ,vol. 49, pp. 695- 695 ,(1982) , 10.1103/PHYSREVLETT.49.695
A. MacKinnon, B. Kramer, The scaling theory of electrons in disordered solids: Additional numerical results Zeitschrift für Physik B Condensed Matter. ,vol. 53, pp. 1- 13 ,(1983) , 10.1007/BF01578242
C. M. Soukoulis, I. Webman, G. S. Grest, E. N. Economou, Study of electronic states with off-diagonal disorder in two dimensions Physical Review B. ,vol. 26, pp. 1838- 1841 ,(1982) , 10.1103/PHYSREVB.26.1838