Gcvpack – routines for generalized cross validation

作者: Douglas M. Bates , Mary J Lindstrom , Grace Wahba , Brian S Yandell

DOI: 10.1080/03610918708812590

关键词:

摘要: These Fortran-77 subroutines provide building blocks for Generalized Cross-Validation (GCV) (Craven and Wahba, 1979) calculations in data analysis smoothing including ridge regression (Golub, Heath, 1979), thin plate splines (Wahba Wendelberger, 1980), deconvolution (Wahba, 1982d), of generalized linear models (O'sullivan, Yandell Raynor 1986, Green 1984 1985), ill-posed problems (Nychka et al., 1984, O'sullivan 1985). We present some the types which GCV is a useful method choosing or regularization parameter we describe structure subroutines.Ridge Regression: A familiar example X problem write.

参考文章(29)
J. J. Dongarra, C. B. Moler, G. W. Stewart, J. R. Bunch, LINPACK Users' Guide ,(1987)
Peter J. Green, Brian S. Yandell, Semi-Parametric Generalized Linear Models. Springer, New York, NY. pp. 44- 55 ,(1985) , 10.1007/978-1-4615-7070-7_6
Douglas Nychka, Grace Wahba, Stanley Goldfarb, Thomas Pugh, None, Cross-Validated Spline Methods for the Estimation of Three-Dimensional Tumor Size Distributions from Observations on Two-Dimensional Cross Sections Journal of the American Statistical Association. ,vol. 79, pp. 832- 846 ,(1984) , 10.1080/01621459.1984.10477100
Gene H. Golub, Michael Heath, Grace Wahba, Generalized Cross-Validation as a Method for Choosing a Good Ridge Parameter Technometrics. ,vol. 21, pp. 215- 223 ,(1979) , 10.1080/00401706.1979.10489751