Ephemeral Resource Constraints in Optimization

作者: Richard Allmendinger , Joshua Knowles

DOI: 10.1007/978-81-322-2184-5_4

关键词:

摘要: Constraints in optimization come traditionally two types familiar to most readers: hard and soft. Hard constraints delineate absolutely between feasible infeasible solutions, whereas soft essentially specifyadditional objectives. In this chapter, we describe a third type of constraint, much less only investigated recently, which call ephemeral resource (ERCs). ERCs differ from the other three major ways. (i) The are dynamic or temporary (i.e., may be active not active), occur during optimization—they do affect feasibility final solutions. (ii) Solutions violating cannot evaluated on objective function—in fact that is their main defining property. (iii) usually function previous solutions evaluated, bringing time-linkage aspect optimization. We explain with examples how these arise real-world problems, especially when solution evaluation depends experimental processes (i.e. “closed-loop optimization”). Using theoretical model based Markov chains, effects evolutionary search, e.g., drift search direction, described. Next, number strategies for coping summarized, evidence robustness provided. section, look future consider many open questions there new area.

参考文章(52)
Michael D. Vose, Gunar E. Liepins, Punctuated Equilibria in Genetic Search. Complex Systems. ,vol. 5, ,(1991)
H.P. Schwefel, J. Klockgether, TWO-PHASE NOZZLE AND HOLLOW CORE JET EXPERIMENTS. pp 141-8 of Engineering Aspects of Magnetohydrodynamics. /Elliott, D. G. (ed.). University, Miss. Univ. of Mississippi (1970).. ,(1970)
David E. Goldberg, Philip Segrest, Finite Markov chain analysis of genetic algorithms international conference on genetic algorithms. pp. 1- 8 ,(1987)
Jeffrey Horn, Finite Markov Chain Analysis of Genetic Algorithms with Niching international conference on genetic algorithms. pp. 110- 117 ,(1993)
Trung Thanh Nguyen, Continuous dynamic optimisation using evolutionary algorithms University of Birmingham. ,(2011)
Richard Allmendinger, Tuning evolutionary search for closed-loop optimization [Thesis]. Manchester, UK: The University of Manchester; 2012.. ,(2012)
Gilbert Syswerda, A Study of Reproduction in Generational and Steady-State Genetic Algorithms Foundations of Genetic Algorithms. ,vol. 1, pp. 94- 101 ,(1991) , 10.1016/B978-0-08-050684-5.50009-4
Finding Groups in Data John Wiley & Sons, Inc.. ,(1990) , 10.1002/9780470316801
Olivier Teytaud, Nicolas Baskiotis, Sylvain Gelly, Cédric Hartland, Michèle Sebag, Change Point Detection and Meta-Bandits for Online Learning in Dynamic Environments CAp 2007 : 9è Conférence francophone sur l'apprentissage automatique. pp. 237- 250 ,(2007)