On two-signed solutions to a second order semi-linear parabolic partial differential equation with non-Lipschitz nonlinearity

作者: V. Clark , J.C. Meyer

DOI: 10.1016/J.JDE.2020.01.007

关键词:

摘要: Abstract In this paper, we establish the existence of a 1-parameter family spatially inhomogeneous radially symmetric classical self-similar solutions to Cauchy problem for semi-linear parabolic PDE with non-Lipschitz nonlinearity and trivial initial data. Specifically well-posedness an associated value singular two-dimensional non-autonomous dynamical system nonlinearity. Additionally, that converge algebraically origin oscillate as η → ∞ .

参考文章(27)
Peter D. Miller, Applied asymptotic analysis ,(2006)
Peter Pol� c ik, Eiji Yanagida, On bounded and unbounded global solutions of a supercritical semilinear heat equation Mathematische Annalen. ,vol. 327, pp. 745- 771 ,(2003) , 10.1007/S00208-003-0469-Y
Claus Dohmen, Munemitsu Hirose, Structure of positive radial solutions to the Haraux-Weissler equation Nonlinear Analysis-theory Methods & Applications. ,vol. 33, pp. 51- 69 ,(1998) , 10.1016/S0362-546X(97)00542-7
Noriko Mizoguchi, Eiji Yanagida, Critical exponents for the blow-up of solutions with sign changes in a semilinear parabolic equation Mathematische Annalen. ,vol. 307, pp. 663- 675 ,(1997) , 10.1007/S002080050055
J. Aguirre, M. Escobedo, A Cauchy problem for $u_t - \Delta u = u^p \ \hbox{with}\ 0 < p < 1$. Asymptotic behaviour of solutions Annales de la faculté des sciences de Toulouse Mathématiques. ,vol. 8, pp. 175- 203 ,(1987) , 10.5802/AFST.637
Fred B. Weissler, Existence and non-existence of global solutions for a semilinear heat equation Israel Journal of Mathematics. ,vol. 38, pp. 29- 40 ,(1981) , 10.1007/BF02761845
J. C. Meyer, D. J. Needham, Well-posedness and qualitative behaviour of a semi-linear parabolic Cauchy problem arising from a generic model for fractional-order autocatalysis Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences. ,vol. 471, pp. 20140632- 20140632 ,(2015) , 10.1098/RSPA.2014.0632
J. C. Meyer, D. J. Needham, Extended weak maximum principles for parabolic partial differential inequalities on unbounded domains Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences. ,vol. 470, pp. 20140079- ,(2014) , 10.1098/RSPA.2014.0079