Initial Development of the Microcavity Discharge Thruster

作者: Julia Laystrom-Woodard , David Carroll , Rodney L. Burton , Gabriel Benavides , J. Gary Eden

DOI:

关键词:

摘要: Proof-of-concept efforts to demonstrate the propulsion capabilities of microcavity plasma discharges through design and fabrication a Microcavity Discharge (MCD) thruster are discussed. The primary goal is fabricate MCD that can ultimately achieve performance levels 1 mN per cavity, thrust efficiency exceeding 60%, an Isp 160 seconds. Because has low specific mass scalable over large number cavities, successful demonstration would result in advanced system useful for (orbit transfer, maneuvering) secondary (attitude, position acceleration control) applications wide range satellites. Research at University Illinois (Optical Physics Engineering, Electric Propulsion labs) Texas Austin (Computational Plasma Lab) described. electrode arrays with integral micronozzles on each cavity fabricated driven 20 – 150 kHz power level up 0.25 W cavity. Thruster flow measurements made cold determine nozzle performance. Heating stagnation temperature heat loss. Computational modeling provides simulation-based understanding physics supports experimental measurements. A detailed first-principles computational model time-accurate solutions multi-species, multi-temperature, self-consistent governing equations discharge physics, coupled compressible Navier-Stokes bulk fluid thruster.

参考文章(18)
S.-J. Park, K. S. Kim, J. G. Eden, Nanoporous alumina as a dielectric for microcavity plasma devices: Multilayer Al/Al2O3 structures Applied Physics Letters. ,vol. 86, pp. 221501- ,(2005) , 10.1063/1.1923747
Robert Louis Bayt, Analysis, Fabrication and Testing of a MEMS-based Micropropulsion System Ph.D. Thesis. pp. 354- ,(1999)
W. Earl Morren, Stuart S. Hay, Thomas W. Haag, James S. Sovey, Performance characterizations of an engineering model multipropellant resistojet Journal of Propulsion and Power. ,vol. 5, pp. 197- 203 ,(1989) , 10.2514/3.23136
L. Levin, S. Moody, E. Klosterman, R. Center, J. Ewing, Kinetic model for long-pulse XeCl laser performance IEEE Journal of Quantum Electronics. ,vol. 17, pp. 2282- 2289 ,(1981) , 10.1109/JQE.1981.1070708
Gary F. Willmes, Rodney L. Burton, Low-Power Helium Pulsed Arcjet Journal of Propulsion and Power. ,vol. 15, pp. 440- 446 ,(1999) , 10.2514/2.5446
Yoshinori Takao, Kouichi Ono, None, A miniature electrothermal thruster using microwave-excited plasmas : a numerical design consideration Plasma Sources Science and Technology. ,vol. 15, pp. 211- 227 ,(2006) , 10.1088/0963-0252/15/2/006
R. L. Burton, P. J. Turchi, Pulsed Plasma Thruster Journal of Propulsion and Power. ,vol. 14, pp. 716- 735 ,(1998) , 10.2514/2.5334
K. S. Kim, T. L. Kim, J. K. Yoon, S.-J. Park, J. G. Eden, Control of cavity cross section in microplasma devices: Luminance and temporal response of 200×100 and 320×160 arrays with parabolic Al2O3 microcavities Applied Physics Letters. ,vol. 94, pp. 011503- ,(2009) , 10.1063/1.3043685
J. Meunier, Ph. Belenguer, J. P. Boeuf, Numerical model of an ac plasma display panel cell in neon‐xenon mixtures Journal of Applied Physics. ,vol. 78, pp. 731- 745 ,(1995) , 10.1063/1.360684