Parametric modeling of millimeter-wave passive components using combined neural networks and transfer functions

作者: Venu-Madhav-Reddy Gongal-Reddy , Feng Feng , Qi-Jun Zhang

DOI: 10.1109/GSMM.2015.7175449

关键词:

摘要: This paper propose to develop the combined neural networks and transfer functions (neuro-TF) for parametric modeling of millimeter-wave passive components. Artificial (ANN) techniques are recognized as a powerful tool EM behavior microwave In this paper, we train ANN map geometrical variables onto coefficients functions. The model obtained using our proposed technique can achieve good accuracy, be further used in high-level design. Two examples demonstrate validity technique.

参考文章(23)
M. Bozzi, A. Georgiadis, K. Wu, Review of substrate-integrated waveguide circuits and antennas Iet Microwaves Antennas & Propagation. ,vol. 5, pp. 909- 920 ,(2011) , 10.1049/IET-MAP.2010.0463
Slawomir Koziel, Qingsha S. Cheng, John W. Bandler, Fast EM Modeling Exploiting Shape-Preserving Response Prediction and Space Mapping IEEE Transactions on Microwave Theory and Techniques. ,vol. 62, pp. 399- 407 ,(2014) , 10.1109/TMTT.2014.2300447
Maurizio Bozzi, Marco Pasian, Luca Perregrini, Advanced modeling and design of substrate integrated waveguide components ieee international wireless symposium. pp. 1- 4 ,(2014) , 10.1109/IEEE-IWS.2014.6864265
Feng Feng, Chao Zhang, Venu-Madhav-Reddy Gongal-Reddy, Qi-Jun Zhang, Knowledge-based coarse and fine mesh space mapping approach to EM optimization Numerical Electromagnetic Modeling and Optimization for RF, Microwave, and Terahertz Applications (NEMO), 2014 International Conference on. pp. 1- 4 ,(2014) , 10.1109/NEMO.2014.6995665
R.W. Jackson, Considerations in the Use of Coplanar Waveguide for Millimeter-Wave Integrated Circuits IEEE Transactions on Microwave Theory and Techniques. ,vol. 34, pp. 1450- 1456 ,(1986) , 10.1109/TMTT.1986.1133562
J.W. Bandler, M.A. Ismail, J.E. Rayas-Sanchez, Qi-Jun Zhang, Neuromodeling of microwave circuits exploiting space mapping technology international microwave symposium. ,vol. 47, pp. 2417- 2427 ,(1999) , 10.1109/22.808989
Qi-Jun Zhang, K.C. Gupta, V.K. Devabhaktuni, Artificial neural networks for RF and microwave design - from theory to practice IEEE Transactions on Microwave Theory and Techniques. ,vol. 51, pp. 1339- 1350 ,(2003) , 10.1109/TMTT.2003.809179
S. Tamura, M. Tateishi, Capabilities of a four-layered feedforward neural network: four layers versus three IEEE Transactions on Neural Networks. ,vol. 8, pp. 251- 255 ,(1997) , 10.1109/72.557662
J. Hinojosa, G. Domenech, J. Martinez, J. Garrigos, Empirical model generation techniques for planar microwave components using electromagnetic linear regression models international microwave symposium. ,vol. 53, pp. 1143- 1146 ,(2005) , 10.1109/MWSYM.2005.1516875
V. Rizzoli, A. Costanzo, D. Masotti, A. Lipparini, F. Mastri, Computer-aided optimization of nonlinear microwave circuits with the aid of electromagnetic simulation IEEE Transactions on Microwave Theory and Techniques. ,vol. 52, pp. 362- 377 ,(2004) , 10.1109/TMTT.2003.820898