Many-sphere hydrodynamic interactions and mobilities in a suspension

作者: P. Mazur , W. van Saarloos

DOI: 10.1016/0378-4371(82)90127-3

关键词:

摘要: Abstract A general scheme is presented to evaluate the mobility tensors of an arbitrary number spheres, immersed in a viscous fluid, power series expansion R-1, where R typical distance between spheres. Some properties these (translational and rotational) are discussed. Explicit expressions derived up order R-7. To this order, hydrodynamic interactions two, three four spheres contribute.

参考文章(10)
John Happel, Howard Brenner, Low Reynolds number hydrodynamics ,(1965)
G. K. Batchelor, Brownian diffusion of particles with hydrodynamic interaction Journal of Fluid Mechanics. ,vol. 74, pp. 1- 29 ,(1976) , 10.1017/S0022112076001663
J. M. Deutch, Irwin Oppenheim, Molecular Theory of Brownian Motion for Several Particles The Journal of Chemical Physics. ,vol. 54, pp. 3547- 3555 ,(1971) , 10.1063/1.1675379
B.U. Felderhof, Hydrodynamic interaction between two spheres Physica A-statistical Mechanics and Its Applications. ,vol. 89, pp. 373- 384 ,(1977) , 10.1016/0378-4371(77)90111-X
P. Reuland, B.U. Felderhof, R.B. Jones, Hydrodynamic interaction of two spherically symmetric polymers Physica A-statistical Mechanics and Its Applications. ,vol. 93, pp. 465- 475 ,(1978) , 10.1016/0378-4371(78)90167-X
P. Mazur, G. van der Zwan, Brownian motion in a fluid close to its' critical point Physica A-statistical Mechanics and Its Applications. ,vol. 92, pp. 483- 500 ,(1978) , 10.1016/0378-4371(78)90147-4
P. Mazur, On the motion and Brownian motion of n spheres in a viscous fluid Physica A: Statistical Mechanics and its Applications. ,vol. 110, pp. 128- 146 ,(1982) , 10.1016/0378-4371(82)90107-8
T. J. Murphy, J. L. Aguirre, Brownian Motion of N Interacting Particles. I. Extension of the Einstein Diffusion Relation to the N-Particle Case Journal of Chemical Physics. ,vol. 57, pp. 2098- 2104 ,(1972) , 10.1063/1.1678535
G. J. Kynch, The slow motion of two or more spheres through a viscous fluid Journal of Fluid Mechanics. ,vol. 5, pp. 193- 208 ,(1959) , 10.1017/S0022112059000155