Priors for Random Count Matrices Derived from a Family of Negative Binomial Processes

作者: Mingyuan Zhou , Oscar Hernan Madrid Padilla , James G. Scott

DOI: 10.1080/01621459.2015.1075407

关键词:

摘要: We define a family of probability distributions for random count matrices with a potentially unbounded number of rows and columns. The three distributions we consider are derived from …

参考文章(45)
David J. Aldous, Exchangeability and related topics Lecture Notes in Mathematics. ,vol. 1117, pp. 1- 198 ,(1985) , 10.1007/BFB0099421
Hinrich Schütze, Christopher D. Manning, Prabhakar Raghavan, Introduction to Information Retrieval ,(2005)
Kamal Nigam, Andrew McCallum, A comparison of event models for naive bayes text classification national conference on artificial intelligence. pp. 41- 48 ,(1998)
Rainer Winkelmann, Econometric Analysis of Count Data ,(1997)
Stéphane Clinchant, Eric Gaussier, The BNB distribution for text modeling european conference on information retrieval. pp. 150- 161 ,(2008) , 10.5555/1793274.1793296
Stephen G Walker, Mingyuan Zhou, Sample Size Dependent Species Models arXiv: Methodology. ,(2014)
Geoffrey Hinton, Ruslan Salakhutdinov, Nitish Srivastava, Modeling documents with a Deep Boltzmann Machine uncertainty in artificial intelligence. pp. 616- 624 ,(2013)
David M Blei, Andrew Y Ng, Michael I Jordan, None, Latent dirichlet allocation Journal of Machine Learning Research. ,vol. 3, pp. 993- 1022 ,(2003) , 10.5555/944919.944937