Mini-Minimax Uncertainty Quantification for Emulators

作者: Jeffrey C. Regier , Philip B. Stark

DOI: 10.1137/130917909

关键词:

摘要: Consider approximating a "black box" function $f$ by an emulator $\hat{f}$ based on $n$ noiseless observations of $f$. Let $w$ be point in the domain How big might error $|\hat{f}(w) - f(w)|$ be? If could arbitrarily rough, this large: we need some constraint besides data. Suppose is Lipschitz with known constant. We find lower bound number required to ensure that for best data, f(w)| \le \epsilon$. But general, will not know whether Lipschitz, much less its Assume optimistically Lipschitz-continuous smallest constant consistent maximum (over such regular $f$) possible $\hat{f}$; call "mini-minimax uncertainty" at $w$. In reality, or---if it is---it attain Hence, mini-minimax uncertainty smaller than f(w)|$. if large, then---even satisfies optimistic regularity assumption---$|\hat{f}(w) no matter how cleverly choose $\hat{f}$. For Community Atmosphere Model, $w$) set 1154~observations would single observation centroid 21-dimensional parameter space. also confidence bounds quantiles and mean over these are appreciable fraction maximum.

参考文章(19)
C Covey, S Brandon, P Bremer, D Domyancis, X Garaizar, G Johannesson, R Klein, S Klein, D Lucas, J Tannahill, Y Zhang, A New Ensemble of Perturbed-Input-Parameter Simulations by the Community Atmosphere Model Lawrence Livermore National Laboratory. ,(2011) , 10.2172/1035301
R. A. Bates, R. J. Buck, E. Riccomagno, H. P. Wynn, Experimental Design and Observation for Large Systems Journal of the Royal Statistical Society: Series B (Methodological). ,vol. 58, pp. 77- 94 ,(1996) , 10.1111/J.2517-6161.1996.TB02068.X
Jonathan Backer, J. Mark Keil, The mono- and bichromatic empty rectangle and square problems in all dimensions latin american symposium on theoretical informatics. pp. 14- 25 ,(2010) , 10.1007/978-3-642-12200-2_3
H. Woźniakowski, Joseph Frederick Traub, A general theory of optimal algorithms Academic Press. ,(1980)
A. J. Booker, J. E. Dennis, P. D. Frank, D. B. Serafini, V. Torczon, M. W. Trosset, A Rigorous Framework for Optimization of Expensive Functions by Surrogates Structural Optimization. ,vol. 17, pp. 1- 13 ,(1998) , 10.1007/BF01197708
A. Srivastava, K. Hacker, K. Lewis, T.W. Simpson, A method for using legacy data for metamodel-based design of large-scale systems Structural and Multidisciplinary Optimization. ,vol. 28, pp. 146- 155 ,(2004) , 10.1007/S00158-004-0438-4
David Aspenberg (né Lönn), Johan Jergeus, Larsgunnar Nilsson, Robust optimization of front members in a full frontal car impact Engineering Optimization. ,vol. 45, pp. 245- 264 ,(2013) , 10.1080/0305215X.2012.669380
Claudia Tebaldi, Richard L. Smith, Doug Nychka, Linda O. Mearns, Quantifying Uncertainty in Projections of Regional Climate Change: A Bayesian Approach to the Analysis of Multimodel Ensembles Journal of Climate. ,vol. 18, pp. 1524- 1540 ,(2005) , 10.1175/JCLI3363.1
Thomas J Santner, Brian J Williams, William I Notz, Brain J Williams, None, The Design and Analysis of Computer Experiments ,(2003)
Einat Neumann Ben-Ari, David M. Steinberg, Modeling Data from Computer Experiments: An Empirical Comparison of Kriging with MARS and Projection Pursuit Regression Quality Engineering. ,vol. 19, pp. 327- 338 ,(2007) , 10.1080/08982110701580930