Asymptotic analysis of a thin interface: The case involving similar rigidity

作者: F. Lebon , R. Rizzoni

DOI: 10.1016/J.IJENGSCI.2009.12.001

关键词:

摘要: This study deals with a linear elastic body consisting of two solids connected by thin adhesive interphase small thickness e. The three parts have similar moduli. It is proposed to model the limit behavior when e -> 0. has been established [1], using matched asymptotic expansions, that at order zero, reduces perfect interface, while one, behaves like an imperfect transmission condition involving displacement and traction vectors zero. interface exactly recovered C-convergence argument. At higher order, new obtained studying properties suitable (weakly converging) sequence equilibrium solutions. Some analytical examples are given illustrate results obtained.

参考文章(32)
P. M. Suquet, Discontinuities and Plasticity Springer, Vienna. pp. 279- 340 ,(1988) , 10.1007/978-3-7091-2624-0_5
H. Le Dret, A. Raoult, The nonlinear membrane model as variational limit of nonlinear three-dimensional elasticity Journal de Mathématiques Pures et Appliquées. ,vol. 74, pp. 549- 578 ,(1995)
C. Licht, Comportement asymptotique d'une bande dissipative mince de faible rigidité Comptes rendus de l'Académie des sciences. Série 1, Mathématique. ,vol. 317, pp. 429- 433 ,(1993)
G. Michaille, C. Licht, Une modélisation du comportement d'un joint collé élastique Comptes rendus de l'Académie des sciences. Série 1, Mathématique. ,vol. 322, pp. 295- 300 ,(1996)
Pierre Ladevèze, Local effects in the analysis of structures Elsevier , Distributors for the U.S. and Canada, Elsevier Science. ,(1985)
Gianni Dal Maso, An Introduction to Γ-Convergence ,(1992)
H. Attouch, Variational convergence for functions and operators Pitman Advanced Pub. Program. ,(1984)
P. D. Panagiotopoulos, Jean-Jacques Moreau, Nonsmooth Mechanics and Applications ,(1989)
N. NGUETSENG, E. SANCHEZ-PALENCIA, Stress Concentration for Defects Distributed Near a Surface Studies in Applied Mechanics. ,vol. 12, pp. 55- 74 ,(1985) , 10.1016/B978-0-444-42520-1.50007-4