Gradient solitons on statistical manifolds

作者: Adara M Blaga , Bang-Yen Chen , None

DOI: 10.1016/J.GEOMPHYS.2021.104195

关键词:

摘要: Abstract We provide necessary and sufficient conditions for some particular couples ( g , ∇ ) of pseudo-Riemannian metrics affine connections to be statistical structures if we have gradient almost Einstein, Ricci, Yamabe solitons, or a more general type solitons on the manifold. In cases, establish formula volume manifold give lower an upper bound norm Ricci curvature tensor field.

参考文章(10)
Adara M. Blaga, $\eta$-Ricci solitons on para-Kenmotsu manifolds arXiv: Differential Geometry. ,(2014)
Hirohiko SHIMA, Symmetric spaces with invariant locally Hessian structures Journal of The Mathematical Society of Japan. ,vol. 29, pp. 581- 589 ,(1977) , 10.2969/JMSJ/02930581
Miguel Brozos-Vázquez, Eduardo García-Río, Peter Gilkey, Stana Nikčević, Ramón Vázquez-Lorenzo, The Geometry of Walker Manifolds Synthesis Lectures on Mathematics and Statistics. ,vol. 2, pp. 1- 179 ,(2009) , 10.2200/S00197ED1V01Y200906MAS005
Thomas M. Cover, Joy A. Thomas, Elements of information theory ,(1991)
Katsumi Nomizu, Affine differential geometry ,(1994)
Wilhelm Klingenberg, Manifolds With Restricted Conjugate Locus: II The Annals of Mathematics. ,vol. 80, pp. 330- ,(1964) , 10.2307/1970395
Cholrim Min, Wonhak Ri, Kumhyok Kwak, Dokjun An, Equiaffine structure and conjugate Ricci-symmetry of a statistical manifold Differential Geometry and Its Applications. ,vol. 41, pp. 39- 47 ,(2015) , 10.1016/J.DIFGEO.2015.04.005
Mircea Crasmareanu, A new approach to gradient Ricci solitons and generalizations Filomat. ,vol. 32, pp. 3337- 3346 ,(2018) , 10.2298/FIL1809337C
Nigel J. Hitchin, The moduli space of special lagrangian submanifolds Annali Della Scuola Normale Superiore Di Pisa-classe Di Scienze. ,vol. 25, pp. 503- 515 ,(1997)
Adara M. Blaga, On solitons in statistical geometry International journal of applied mathematics and statistics. ,vol. 58, pp. 1- 10 ,(2019)