The Impact of Spray Droplet Size on the Efficacy of 2,4-D, Atrazine, Chlorimuron-Methyl, Dicamba, Glufosinate, and Saflufenacil

作者: Cody F. Creech , Jesaelen G. Moraes , Ryan S. Henry , Joe D. Luck , Greg R. Kruger

DOI: 10.1614/WT-D-15-00034.1

关键词:

摘要: Herbicide applications often do not reach their full potential because only a small amount of the active ingredients reaches the intended targets. Selecting the appropriate application parameters and equipment can allow for improved efficacy. The objective of this research was to evaluate the effect of droplet size on efficacy of six commonly used herbicides. Atrazine (1.12 kg ai ha−1), cloransulam-methyl (0.18 g ai ha−1), dicamba (0.14 kg ae ha−1), glufosinate (0.59 kg ai ha−1), saflufenacil (12.48 g ai ha−1), and 2,4-D (0.20 kg ae ha−1) were applied to seven plant species using an XR11003 nozzle at 138, 276, and 414 kPa and a AI11003 nozzle at 207, 345, and 483 kPa. Each herbicide, nozzle, and pressure combination was evaluated for droplet size spectra. Treatments were applied at 131 L ha−1to common lambsquarters, common sunflower, shattercane, soybean, tomato, velvetleaf, and volunteer corn. Control from 2,4-D was observed to increase approximately 12% on average for all species except common lambsquarters as droplet size increased from medium to very coarse (Dv0.5303 to 462 μm;Dv0.5is droplet size such that 50% of spray volume is contained in droplets of equal or smaller size). Control with atrazine was near 95% for common lambsquarters, common sunflower, and soybean. Atrazine provided the greatest shattercane control using a medium (Dv0.5325 μm) droplet, whereas the same droplet size provided the lowest tomato control. Control of common lambsquarters, shattercane, and tomato with cloransulam-methyl increased 79% when decreasing droplet size from extremely coarse to fine (Dv0.5637 to 228 μm). Dicamba control of common lambsquarters increased 17% using a medium droplet compared with a fine droplet (Dv0.5279 to 204 μm). Dry weight of common sunflower and soybean was reduced 21% using dicamba when using a very coarse spray compared with a fine spray classification (Dv0.5491 to 204 μm). Common lambsquarters control using glufosinate increased 18% using a fine spray classification (Dv0.5186 μm) compared with medium (Dv0.5250 μm) and both very coarse droplet sizes (Dv0.5470 and 516 μm). Conversely, tomato and velvetleaf control with glufosinate was maximized using a very coarse (Dv0.5470 and 516 μm) or extremely coarse droplet (Dv0.5628 μm) with increases of 11 and 25% compared with a fine spray (Dv0.5186 μm). Saflufenacil control of volunteer corn was 38% greater using extremely coarse droplets (Dv0.5622 μm) than fine, medium, and very coarse spray classifications (Dv0.5257 to 514 μm). Overall, spray classifications for the herbicides evaluated play an important role in herbicide efficacy and should be tailored to the herbicide being used and the targeted weed species.

参考文章(30)
Steven R. Radosevich, Claudio M. Ghersa, Gary Comstock, Concerns a Weed Scientist Might Have About Herbicide-Tolerant Crops Weed Technology. ,vol. 6, pp. 635- 639 ,(1992) , 10.1017/S0890037X00035946
W. B. Ennis, Ralph E. Williamson, Influence of Droplet Size on Effectiveness of Low-Volume Herbicidal Sprays Weeds. ,vol. 11, pp. 67- ,(1963) , 10.2307/4040689
J. Harr, R. H. Falk, G. Schulke, R. Guggenheim, The leaf surface of major weeds. The leaf surface of major weeds.. ,(1991)
Ramon C Littell, Walter W. Stroup, George A. Milliken, Russell D. Wolfinger, Oliver Schabenberger, SAS for Mixed Models ,(2018)
BRADFORD K. RAMSDALE, CALVIN G. MESSERSMITH, Drift-Reducing Nozzle Effects on Herbicide Performance1 Weed Technology. ,vol. 15, pp. 453- 460 ,(2001) , 10.1614/0890-037X(2001)015[0453:DRNEOH]2.0.CO;2
ROBERT E. ETHERIDGE, WILLIAM E. HART, ROBERT M. HAYES, THOMAS C. MUELLER, Effect of Venturi-Type Nozzles and Application Volume on Postemergence Herbicide Efficacy1 Weed Technology. ,vol. 15, pp. 75- 80 ,(2001) , 10.1614/0890-037X(2001)015[0075:EOVTNA]2.0.CO;2
J. D. Weidenhamer, G. B. Triplett, F. E. Sobotka, Dicamba Injury to Soybean Agronomy Journal. ,vol. 81, pp. 637- 643 ,(1989) , 10.2134/AGRONJ1989.00021962008100040017X
PETER H. SIKKEMA, LYNETTE BROWN, CHRISTY SHROPSHIRE, HELMUT SPIESER, NADER SOLTANI, Flat fan and air induction nozzles affect soybean herbicide efficacy Weed Biology and Management. ,vol. 8, pp. 31- 38 ,(2008) , 10.1111/J.1445-6664.2007.00271.X
Ulrike Kammann, Thomas Lang, Werner Wosniok, Biological effects monitoring in marine research Environmental Sciences Europe. ,vol. 24, pp. 1- 12 ,(2012) , 10.1186/2190-4715-24-1
J.H. Combellack, Herbicide application: a review of ground application techniques Crop Protection. ,vol. 3, pp. 9- 34 ,(1984) , 10.1016/0261-2194(84)90003-6