Support vector machine classification on the web

作者: P. Pavlidis , I. Wapinski , W. S. Noble

DOI: 10.1093/BIOINFORMATICS/BTG461

关键词:

摘要: Summary: The support vector machine (SVM) learning algorithm has been widely applied in bioinformatics. We have developed a simple web interface to our implementation of the SVM algorithm, called Gist. This allows novice or occasional users apply sophisticated easily their data. More advanced can download software and source code for local installation. availability these tools will permit more widespread application this powerful bioinformatics. Availability: Web at svm.sdsc.edu. Binaries microarray.cpmc.columbia.edu/gist.

参考文章(19)
SVMTorch: support vector machines for large-scale regression problems Journal of Machine Learning Research. ,vol. 1, pp. 143- 160 ,(2001) , 10.1162/15324430152733142
Thorsten Joachims, Making large scale SVM learning practical Technical reports. ,(1999) , 10.17877/DE290R-14262
Nello Cristianini, J Shawe-Taylor, An introduction to Support Vector Machines Cambridge University Press (2000). ,(2000)
D. C. Anderson, Weiqun Li, Donald G. Payan, William Stafford Noble, A new algorithm for the evaluation of shotgun peptide sequencing in proteomics: support vector machine classification of peptide MS/MS spectra and SEQUEST scores. Journal of Proteome Research. ,vol. 2, pp. 137- 146 ,(2003) , 10.1021/PR0255654
Paul Pavlidis, Terrence S Furey, Muriel Liberto, David Haussler, William Noble Grundy, None, Promoter region-based classification of genes. pacific symposium on biocomputing. pp. 151- 163 ,(2000) , 10.1142/9789814447362_0016
Michael PS Brown, William Noble Grundy, David Lin, Nello Cristianini, Charles Walsh Sugnet, Terrence S Furey, Manuel Ares Jr, David Haussler, None, Knowledge-based analysis of microarray gene expression data by using support vector machines Proceedings of the National Academy of Sciences of the United States of America. ,vol. 97, pp. 262- 267 ,(2000) , 10.1073/PNAS.97.1.262
J. R. Bock, D. A. Gough, Predicting protein--protein interactions from primary structure. Bioinformatics. ,vol. 17, pp. 455- 460 ,(2001) , 10.1093/BIOINFORMATICS/17.5.455
Eleazar Eskin, Christina S. Leslie, Jason Weston, William S. Noble, Mismatch String Kernels for SVM Protein Classification neural information processing systems. ,vol. 15, pp. 1441- 1448 ,(2002)