Human Action Recognition: Contour-Based and Silhouette-Based Approaches

作者: Salim Al-Ali , Mariofanna Milanova , Hussain Al-Rizzo , Victoria Lynn Fox

DOI: 10.1007/978-3-319-11430-9_2

关键词:

摘要: Human action recognition in videos is a desired field computer vision applications since it can be applied human interaction, surveillance monitors, robot vision, etc. Two approaches of features are investigated this chapter. First approach contour-based type. Four such as Cartesian Coordinate Features (CCF), Fourier Descriptors (FDF), Centroid-Distance (CDF), and Chord-Length (CLF). The second silhouette-based Three Histogram Oriented Gradients (HOG), Optical Flow (HOOF), Structural Similarity Index Measure (SSIM) features. All these simple to compute, efficient classify, fast calculate. Therefore, demonstrate promising for recognition. Moreover, the classification achieved using two classifiers: K-Nearest-Neighbor (KNN) Support Vector Machine (SVM). experimental results demonstrated that have potential useful videos.

参考文章(57)
Alper Yilmaz, Omar Javed, Mubarak Shah, Object tracking: A survey ACM Computing Surveys. ,vol. 38, pp. 13- ,(2006) , 10.1145/1177352.1177355
Chin-Pan Huang, Chaur-Heh Hsieh, Kuan-Ting Lai, Wei-Yang Huang, Human Action Recognition Using Histogram of Oriented Gradient of Motion History Image 2011 First International Conference on Instrumentation, Measurement, Computer, Communication and Control. pp. 353- 356 ,(2011) , 10.1109/IMCCC.2011.95
Dengsheng Zhang, Guojun Lu, A comparative study of curvature scale space and Fourier descriptors for shape-based image retrieval Journal of Visual Communication and Image Representation. ,vol. 14, pp. 39- 57 ,(2003) , 10.1016/S1047-3203(03)00003-8
Janez Perš, Vildana Sulić, Matej Kristan, Matej Perše, Klemen Polanec, Stanislav Kovačič, Histograms of optical flow for efficient representation of body motion Pattern Recognition Letters. ,vol. 31, pp. 1369- 1376 ,(2010) , 10.1016/J.PATREC.2010.03.024
Salim Al-Ali, Mariofonna Milanova, None, Human action recognition in videos using structure similarity of aligned motion images International Journal of Reasoning-based Intelligent Systems. ,vol. 6, pp. 71- 82 ,(2014) , 10.1504/IJRIS.2014.063945
H. Kauppinen, T. Seppanen, M. Pietikainen, An experimental comparison of autoregressive and Fourier-based descriptors in 2D shape classification IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. 17, pp. 201- 207 ,(1995) , 10.1109/34.368168
Tobias Bjerregaard, Shankar Mahadevan, A survey of research and practices of Network-on-chip ACM Computing Surveys. ,vol. 38, pp. 1- 51 ,(2006) , 10.1145/1132952.1132953
Monnet, Mittal, Paragios, Visvanathan Ramesh, Background modeling and subtraction of dynamic scenes international conference on computer vision. ,vol. 3, pp. 1305- 1312 ,(2003) , 10.1109/ICCV.2003.1238641
C. Stauffer, W.E.L. Grimson, Adaptive background mixture models for real-time tracking computer vision and pattern recognition. ,vol. 2, pp. 246- 252 ,(1999) , 10.1109/CVPR.1999.784637
L. Rabiner, B. Juang, An introduction to hidden Markov models IEEE ASSP Magazine. ,vol. 3, pp. 4- 16 ,(1986) , 10.1109/MASSP.1986.1165342