Analysis of the Quasi-Monte Carlo Integration of the Rendering Equation

作者: Laszlo Szirmay-Kalos , Werner Purgathofer

DOI:

关键词:

摘要: Quasi-Monte Carlo integration is said to be better than Monte-Carlo since its error bound can in the order of instead probabilistic classical if integrand has finite variation. However, computer graphics rendering equation usually discontinuous and thus infinite variation, superiority quasi-Monte not been theoretically justified. This paper examines functions using both theoretical arguments simulations explains what kind improvements expected from techniques graphics.

参考文章(17)
Peter Shirley, Discrepancy as a Quality Measure for Sample Distributions eurographics. pp. 183- 194 ,(1991) , 10.2312/EGTP.19911013
Il'ja Meerovič Sobol', Die Monte-Carlo-Methode Deutscher Verlag d. Wiss., VEB. ,(1971)
Alexander Keller, Quasi-Monte Carlo radiosity eurographics symposium on rendering techniques. pp. 101- 110 ,(1996) , 10.1007/978-3-7091-7484-5_11
Alexander Keller, A Quasi-Monte Carlo Algorithm for the Global Illumination Problem in the Radiosity Setting Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing. pp. 239- 251 ,(1995) , 10.1007/978-1-4612-2552-2_15
Philippe Bekaert, László Neumann, Attila Neumann, Mateu Sbert, Yves D. Willems, Hierarchical Monte Carlo Radiosity eurographics. pp. 259- 268 ,(1998) , 10.1007/978-3-7091-6453-2_24
James Arvo, Stratified sampling of spherical triangles Proceedings of the 22nd annual conference on Computer graphics and interactive techniques - SIGGRAPH '95. pp. 437- 438 ,(1995) , 10.1145/218380.218500
H. Friedrich, Ermakow, S. M., Die Monte-Carlo-Methode und verwandte Fragen. 291 S., Berlin 1975. VEB Deutscher Verlag der Wissenschaften. M 62,- ZAMM - Zeitschrift für Angewandte Mathematik und Mechanik. ,vol. 56, pp. 221- 221 ,(1976) , 10.1002/ZAMM.19760560512