A Classification Theorem for Nuclear Purely Infinite Simple C -Algebras 1

作者: N. Christopher Phillips

DOI:

关键词:

摘要: Starting from Kirchberg's theorems announced at the operator algebra conference in Gen eve 1994, namely O2 A = for separable unital nuclear simple and O1 purely innite A; we prove that KK-equivalence implies isomorphism nonunital C -algebras. It follows if B are -algebras which satisfy Universal Coecien t Theorem, there is a graded fromK (A) to K (B) preserves K0-class of identity, then B: Our main technical results are, believe, independent in- terest. We say two asymptotic morphisms 7! 't asymptotically unitarily equivalent exists continuous unitary path ut unitization + such kut't(a)ut t(a)k ! 0 all A: following on deformations equivalence. Let be separable, nuclear, unital, simple, let D unital. Then any morphism equiv- alent homomorphism, homotopic homomorphisms necessarily equivalent. also give some nonclassication nonnuclear case. 1991 Mathematics Subject Classication: Primary 46L35; Secondary 19K99, 46L80.

参考文章(41)
Terry Loring, Stable relations. II. Corona semiprojectivity and dimension-drop $C^*$-algebras. Pacific Journal of Mathematics. ,vol. 172, pp. 461- 475 ,(1996) , 10.2140/PJM.1996.172.461
A. Kishimoto, The Rohlin property for automorphisms of UHF algebras Preprint Series of Department of Mathematics, Hokkaido University. ,vol. 288, pp. 1- 15 ,(1995)
Bruce Blackadar, Shape theory for $C^*$-algebras. Mathematica Scandinavica. ,vol. 56, pp. 249- 275 ,(1985) , 10.7146/MATH.SCAND.A-12100
Masamichi Takesaki, Theory of Operator Algebras II ,(1979)
Shuang Zhang, Certain $C^\ast$-algebras with real rank zero and their corona and multiplier algebras. I. Pacific Journal of Mathematics. ,vol. 155, pp. 169- 197 ,(1992) , 10.2140/PJM.1992.155.169
Simon Wassermann, Exact C*-algebras and related topics Seoul National University. ,(1994)
Eberhard Kirchberg, N. Christopher Phillips, Embedding of exact C*-algebras and continuous fields in the Cuntz algebra O_2 arXiv: Functional Analysis. ,(1997)
Joachim Cuntz, Simple $C^*$-algebras generated by isometries Communications in Mathematical Physics. ,vol. 57, pp. 173- 185 ,(1977) , 10.1007/BF01625776
M. Bekka, M. Cowling, P. Harpe, Some groups whose reduced C*-algebra is simple Publications mathématiques de l'IHÉS. ,vol. 80, pp. 117- 134 ,(1994) , 10.1007/BF02698898
Robert G. Bartle, Lawrence M. Graves, Mappings between function spaces Transactions of the American Mathematical Society. ,vol. 72, pp. 400- 413 ,(1952) , 10.1090/S0002-9947-1952-0047910-X