Fuzzy clustering of categorical data using fuzzy centroids

作者: Dae-Won Kim , Kwang H Lee , Doheon Lee

DOI: 10.1016/J.PATREC.2004.04.004

关键词:

摘要: In this paper the conventional fuzzy k-modes algorithm for clustering categorical data is extended by representing clusters of with centroids instead hard-type used in original algorithm. Use makes it possible to fully exploit power sets uncertainly classification data. To test proposed approach, and two algorithms (the algorithms) were cluster three sets. The method was found give markedly better results.

参考文章(17)
James C. Bezdek, Raghu Krisnapuram, James Keller, Mikhil R. Pal, Fuzzy Models and Algorithms for Pattern Recognition and Image Processing ,(1999)
Teuvo Kohonen, Content-addressable memories ,(1980)
Max A. Woodbury, Jonathan Clive, Clinical Pure Types as a Fuzzy Partition Journal of Cybernetics. ,vol. 4, pp. 111- 121 ,(1974) , 10.1080/01969727408621685
Richard C. Dubes, Anil K. Jain, Algorithms for clustering data ,(1988)
A. K. Jain, M. N. Murty, P. J. Flynn, Data clustering: a review ACM Computing Surveys. ,vol. 31, pp. 264- 323 ,(1999) , 10.1145/331499.331504
L. A. Zadeh, A Fuzzy-Set-Theoretic Interpretation of Linguistic Hedges Journal of Cybernetics. ,vol. 2, pp. 4- 34 ,(1972) , 10.1080/01969727208542910
Ryszard S. Michalski, Robert E. Stepp, Automated Construction of Classifications: Conceptual Clustering Versus Numerical Taxonomy IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. PAMI-5, pp. 396- 410 ,(1983) , 10.1109/TPAMI.1983.4767409
J. C. Gower, A General Coefficient of Similarity and Some of Its Properties Biometrics. ,vol. 27, pp. 857- ,(1971) , 10.2307/2528823
C. L. Blake, UCI Repository of machine learning databases www.ics.uci.edu/〜mlearn/MLRepository.html. ,(1998)