Unendlich-dimensionale Wienerprozesse mit Wechselwirkung

作者: Reinhard Lang

DOI: 10.1007/BF00534170

关键词:

摘要: Suppose Ф is a superstable pair potential on ℝϒ with finite range and three times continuously differentiable Ωi(t) (i=1,2,⋯; t≧0) are independent ϒ-dimensional standard-Wiener-processes related to probability space (Ω,\(\mathfrak{F}\)), Ω: = (Ωi)i=1,2,⋯ The atoms aieℝϒ (i 1,2,⋯) of an element aeℳ, the Radon counting measures ℝv, may move according following equations (G) $$x_i (t;a,\omega ) a_i + \int\limits_o^t {ds( - \tfrac{1}{2}\sum\limits_{j \pm i} {grad} } \Phi (x_i (s;a,\omega x_j ))) \omega _i (t)$$ $$(\omega \in \Omega ; i 1,2,...; t\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{ \geqslant 0)$$ (ΩeΩ; 1,2,⋯; t≧0). Let ∇ σ-algebra generated by vague topology ℳ, Μ measure (ℳ, ∇). Call ℳ-valued stochastic process x(t) xi(t): 1,2,⋯ (xi(t)eℝv, t≧0,ieIN) (ℳ × Ω, ∇, ⊗ Q) Μ-solution (G), if satisfies some measurability conditions xi(t; a, Ω) (i= 1, 2,⋯; t ≧0) satisfy for Q-almost every (a, Ω). Q-invariant, Qx(t)eB=Μ(B) all t≧0 Be∇Be93. Then tempered Gibbs-measures associated holds: A exists. There Q-a.e. unique Q-invariant solution (G). reversible markov process.

参考文章(15)
Oscar E. Lanford, Time evolution of large classical systems Dynamical Systems, Theory and Applications. ,vol. 38, pp. 1- 111 ,(1975) , 10.1007/3-540-07171-7_1
O. E. Lanford, The classical mechanics of one-dimensional systems of infinitely many particles. II. Kinetic theory Communications in Mathematical Physics. ,vol. 11, pp. 257- 292 ,(1969) , 10.1007/BF01645848
Hans-Otto Georgii, Canonical and grand canonical Gibbs states for continuum systems Communications in Mathematical Physics. ,vol. 48, pp. 31- 51 ,(1976) , 10.1007/BF01609410
C. Marchioro, A. Pellegrinotti, E. Presutti, Existence of time evolution forv-dimensional statistical mechanics Communications in Mathematical Physics. ,vol. 40, pp. 175- 185 ,(1975) , 10.1007/BF01609398
A. Kolmogoroff, Zur Umkehrbarkeit der statistischen Naturgesetze Mathematische Annalen. ,vol. 113, pp. 766- 772 ,(1937) , 10.1007/BF01571664
Errico Presutti, Mario Pulvirenti, Brunello Tirozzi, Time evolution of infinite classical systems with singular, long range, two body interactions Communications in Mathematical Physics. ,vol. 47, pp. 81- 95 ,(1976) , 10.1007/BF01609356
O. E. Lanford, The classical mechanics of one-dimensional systems of infinitely many particles. I. An existence theorem Communications in Mathematical Physics. ,vol. 9, pp. 176- 191 ,(1968) , 10.1007/BF01645685
F. Jelinek, BCS-spin-model, its thermodynamic representations and automorphisms Communications in Mathematical Physics. ,vol. 9, pp. 169- 175 ,(1968) , 10.1007/BF01645684
Nguyen Xuan Xanh, Hans Zessin, Martin-Dynkin boundary of mixed poisson processes Probability Theory and Related Fields. ,vol. 37, pp. 191- 200 ,(1977) , 10.1007/BF00537487
D. Ruelle, Superstable interactions in classical statistical mechanics Communications in Mathematical Physics. ,vol. 18, pp. 127- 159 ,(1970) , 10.1007/BF01646091