The integration of Burgers and Korteweg-de Vries equations with nonuniformities

作者: T. Brugarino , P. Pantano

DOI: 10.1016/0375-9601(80)90005-5

关键词:

摘要: Abstract In this letter we demonstrate that both Burgers and Korteweg-de Vries equations with nonuniformity terms can be reduced to a or equation constant coefficients if these satisfy compatibility condition.

参考文章(14)
Ryogo Hirota, The Bäcklund and Inverse Scattering Transform of the K-dV Equation with Nonuniformities Journal of the Physical Society of Japan. ,vol. 46, pp. 1681- 1681 ,(1979) , 10.1143/JPSJ.46.1681
Naruyoshi Asano, Hiroaki Ono, Nonlinear Dispersive or Dissipative Waves in Inhomogeneous Media Journal of the Physical Society of Japan. ,vol. 31, pp. 1830- 1836 ,(1971) , 10.1143/JPSJ.31.1830
Ryogo Hirota, Junkichi Satsuma, N-Soliton Solution of the K-dV Equation with Loss and Nonuniformity Terms Journal of the Physical Society of Japan. ,vol. 41, pp. 2141- 2142 ,(1976) , 10.1143/JPSJ.41.2141
Stephen Maxon, Cylindrical and spherical solitons Rocky Mountain Journal of Mathematics. ,vol. 8, pp. 269- 282 ,(1978) , 10.1216/RMJ-1978-8-1-269
Naruyoshi Asano, B. Wave Propagations in Non-Uniform Media Progress of Theoretical Physics Supplement. ,vol. 55, pp. 52- 79 ,(1974) , 10.1143/PTPS.55.52
Robert M. Miura, The Korteweg–deVries Equation: A Survey of Results SIAM Review. ,vol. 18, pp. 412- 459 ,(1976) , 10.1137/1018076
D G Crighton, Model Equations of Nonlinear Acoustics Annual Review of Fluid Mechanics. ,vol. 11, pp. 11- 33 ,(1979) , 10.1146/ANNUREV.FL.11.010179.000303
John W. Miles, On the Korteweg—de Vries equation for a gradually varying channel Journal of Fluid Mechanics. ,vol. 91, pp. 181- 190 ,(1979) , 10.1017/S0022112079000100
Clifford S. Gardner, John M. Greene, Martin D. Kruskal, Robert M. Miura, Korteweg-devries equation and generalizations. VI. methods for exact solution Communications on Pure and Applied Mathematics. ,vol. 27, pp. 97- 133 ,(1974) , 10.1002/CPA.3160270108