Comment on "Triad of three-particle Lippmann-Schwinger equations"

作者: F. S. Levin , W. Sandhas

DOI: 10.1103/PHYSREVC.34.1140

关键词:

摘要: All existing derivations of the triad Lippmann-Schwinger equations have been rejected by Benoist-Gueutal as lacking in mathematical rigor, leading her to conclude that question validity is still be settled. We settle this deriving directly from mathematically rigorous set Faddeev wave function equations, using one ``rejected'' proofs. This analysis also yields a new derivation relation between components and full scattering state.

参考文章(9)
P. Benoist-Gueutal, Triad of three-particle Lippmann-Schwinger equations. Physical Review C. ,vol. 33, pp. 412- 416 ,(1986) , 10.1103/PHYSREVC.33.412
F. S. Levin, W. Sandhas, Triad of homogeneous and inhomogeneous three-particle Lippmann-Schwinger equations Physical Review C. ,vol. 29, pp. 1617- 1627 ,(1984) , 10.1103/PHYSREVC.29.1617
W. Glöckle, A new approach to the three-body problem Nuclear Physics A. ,vol. 141, pp. 620- 630 ,(1970) , 10.1016/0375-9474(70)90992-9
Suprokash Mukherjee, Uniqueness of the Lippmann-Schwinger equation Physics Letters B. ,vol. 80, pp. 73- 74 ,(1978) , 10.1016/0370-2693(78)90310-6
Suprokash Mukherjee, The homogeneous and inhomogeneous equations of scattering Physics Letters A. ,vol. 81, pp. 207- 210 ,(1981) , 10.1016/0375-9601(81)90242-5
Suprokash Mukherjee, Scattered wave and Lippmann-Schwinger equation Physics Letters A. ,vol. 83, pp. 1- 8 ,(1981) , 10.1016/0375-9601(81)90532-6
D.J. Kouri, F.S. Levin, Coupled channel T-operator equations with connected kernels Nuclear Physics A. ,vol. 250, pp. 127- 140 ,(1975) , 10.1016/0375-9474(75)90204-3