Quantification of the BOLD Response via Blood Gas Modulations

作者: Paula L. Croal

DOI:

关键词:

摘要: This thesis is intended to contribute a quantitative understanding of the blood oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI) signal in order increase its clinical potential. Here, vascular, neuronal and physical processes which combine give resulting BOLD are investigated using respiratory challenges. The effect isocapnic hyperoxia on vascular responses at 7 Tesla. No significant change was found resting-state cerebral flow (CBF), volume (CBV) task-evoked CBF. challenges previously held idea that vasoconstrictive. The oscillations assessed with magnetoencephalography (MEG). Whilst reduction oscillatory power reported occipital lobe, significantly smaller than global measured hypercapnia. These findings suggest an ideal tool for calibrated fMRI. The relationship between transverse relaxation plays key role fMRI. However, previous measurements have been confounded by CBV. be sub-linear across 1.5, 3 Previous results supralinear 1.5/3 Tesla linear Tesla, attributed relative contribution intravascular/extravascular signals their dependence field strength, echo time. Finally, comparison single multiphase ASL made modified Look-locker EPI sequence presented allows simultaneous measurement CBF transit time, whilst increasing available signal. could important implications hypercapnia fMRI, where choice may affect estimated CMRO2. Furthermore, it provides framework future haemodynamic studies required.

参考文章(305)
R. M. Schwartzstein, K. La Hive, A. Pope, R. A. Steinbrook, D. E. Leith, J. W. Weiss, V. Fencl, S. E. Weinberger, Detection of hypercapnia by normal subjects. Clinical Science. ,vol. 73, pp. 333- 335 ,(1987) , 10.1042/CS0730333
Sebastian Reith, Karl Werdan, Intensive care medicine 2004 Medizinische Klinik. ,vol. 99, pp. 603- 612 ,(2004) , 10.1007/S00063-004-1091-9
Robert A. Boyajian, Raymond B. Schwend, Mary M. Wolfe, Robert E. Bickerton, Shirley M. Otis, Measurement of anterior and posterior circulation flow contributions to cerebral blood flow. An ultrasound-derived volumetric flow analysis. Journal of Neuroimaging. ,vol. 5, pp. 1- 3 ,(1995) , 10.1111/JON1995511
Praveen Ballabh, Alex Braun, Maiken Nedergaard, The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiology of Disease. ,vol. 16, pp. 1- 13 ,(2004) , 10.1016/J.NBD.2003.12.016
Dae-Shik Kim, Timothy Q. Duong, Seong-Gi Kim, Reply to "Can current fMRI techniques reveal the micro-architecture of cortex?" Nature Neuroscience. ,vol. 3, pp. 414- 414 ,(2000) , 10.1038/74771
Vishnu C. Srivastava, Gordon D. DeMeester, John V. M. McGinley, Passive shimming technique for MRI magnets ,(1994)
Lidia Glodzik, Catherine Randall, Henry Rusinek, Mony J. de Leon, Cerebrovascular reactivity to carbon dioxide in Alzheimer's disease. Journal of Alzheimer's Disease. ,vol. 35, pp. 427- 440 ,(2013) , 10.3233/JAD-122011
J. Fierstra, O. Sobczyk, A. Battisti-Charbonney, D. M. Mandell, J. Poublanc, A. P. Crawley, D. J. Mikulis, J. Duffin, J. A. Fisher, Measuring cerebrovascular reactivity: what stimulus to use? The Journal of Physiology. ,vol. 591, pp. 5809- 5821 ,(2013) , 10.1113/JPHYSIOL.2013.259150
Martin R. Prince, Donald W. McRobbie, Elizabeth A. Moore, Martin J. Graves, MRI from Picture to Proton ,(2003)
Ksenija Grgac, Peter C. M. van Zijl, Qin Qin, Hematocrit and oxygenation dependence of blood1H2OT1at 7 tesla Magnetic Resonance in Medicine. ,vol. 70, pp. 1153- 1159 ,(2013) , 10.1002/MRM.24547