Counting Chiral Operators in Quiver Gauge Theories

作者: Agostino Butti , Davide Forcella , Amihay Hanany , David Vegh , Alberto Zaffaroni

DOI: 10.1088/1126-6708/2007/11/092

关键词:

摘要: We discuss in detail the problem of counting BPS gauge invariant operators chiral ring quiver theories living on D-branes probing generic toric CY singularities. The computation generating functions that include baryonic is based a relation between charges field theory and Kahler moduli A study interplay geometry shows given geometrical sectors appear more than once theory, leading to notion ``multiplicities". explain how decompose function for one D-brane into different compute their relevant multiplicities by introducing geometric anomalous charges. Plethystic Exponential remains major tool passing from arbitrary number N D-branes. Explicit formulae are few examples, including 3/3, 0, dP1.

参考文章(104)
Davide Forcella, BPS partition functions for quiver gauge theories: Counting fermionic operators arXiv: High Energy Physics - Theory. ,(2007)
Aniket Basu, Gautam Mandal, Dual giant gravitons in AdSm × Yn (Sasaki-Einstein) Journal of High Energy Physics. ,vol. 2007, pp. 014- 014 ,(2007) , 10.1088/1126-6708/2007/07/014
William Fulton, Introduction to Toric Varieties. ,(1993)
Clifford V. Johnson, Robert C. Myers, Aspects of type IIB theory on asymptotically locally Euclidean spaces Physical Review D. ,vol. 55, pp. 6382- 6393 ,(1997) , 10.1103/PHYSREVD.55.6382
Kristian D. Kennaway, Amihay Hanany, Dimer models and toric diagrams arXiv: High Energy Physics - Theory. ,(2005)
Christian Römelsberger, Counting chiral primaries in , superconformal field theories Nuclear Physics B. ,vol. 747, pp. 329- 353 ,(2006) , 10.1016/J.NUCLPHYSB.2006.03.037
Kazushi Ueda, Masahito Yamazaki, Brane tilings for parallelograms with application to homological mirror symmetry arXiv: Algebraic Geometry. ,(2006)
F.A. Dolan, Counting BPS operators in N=4 SYM Nuclear Physics. ,vol. 790, pp. 432- 464 ,(2008) , 10.1016/J.NUCLPHYSB.2007.07.026
Shigeyuki Fujii, , Satoshi Minabe, , A Combinatorial Study on Quiver Varieties Symmetry Integrability and Geometry-methods and Applications. ,vol. 13, pp. 052- ,(2017) , 10.3842/SIGMA.2017.052
David A. Cox, Sheldon Katz, Mirror symmetry and algebraic geometry ,(1999)