VTG schemes for using back propagation for multivariate time series prediction

作者: Taeho Jo

DOI: 10.1016/J.ASOC.2012.11.018

关键词:

摘要: This research proposes the three schemes of estimating and adding mid-terms to multivariate time series. In this research, back propagation is adopted as approach series prediction. It traditionally designed for task with two models: separated model combined model. proposed version prediction systems, mid-term estimator added additional module traditional version. validated empirically that VTG (Virtual Term Generation) are effective on using four test data sets: artificial one a real one.

参考文章(14)
Sungzoon Cho, Min Jang, Sungjune Chang, Virtual sample generation using a population of networks Neural Processing Letters. ,vol. 5, pp. 21- 27 ,(1997) , 10.1023/A:1009653706403
David E. Rumelhart, James L. McClelland, , Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations Computational Models of Cognition and Perception. ,(1986) , 10.7551/MITPRESS/5236.001.0001
Yves Grandvalet, Stéphane Canu, Stéphane Boucheron, Noise injection: theoretical prospects Neural Computation. ,vol. 9, pp. 1093- 1108 ,(1997) , 10.1162/NECO.1997.9.5.1093
Andreas S. Weigend, Bernardo A. Huberman, David E. Rumelhart, PREDICTING THE FUTURE: A CONNECTIONIST APPROACH International Journal of Neural Systems. ,vol. 01, pp. 193- 209 ,(1990) , 10.1142/S0129065790000102
Mary Malliaris, Linda Salchenberger, Using neural networks to forecast the S&P 100 implied volatility Neurocomputing. ,vol. 10, pp. 183- 195 ,(1996) , 10.1016/0925-2312(95)00019-4
Yoshua Bengio, Joumana Ghosn, Multi-Task Learning for Stock Selection neural information processing systems. ,vol. 9, pp. 946- 952 ,(1996)
Nowrouz Kohzadi, Milton S. Boyd, Bahman Kermanshahi, Iebeling Kaastra, A comparison of artificial neural network and time series models for forecasting commodity prices Neurocomputing. ,vol. 10, pp. 169- 181 ,(1996) , 10.1016/0925-2312(95)00020-8