Impact Toughness Prediction for TMCP Steels Using Knowledge-based Neural-fuzzy Modelling

作者: Min-You Chen , D. A. Linkens

DOI: 10.2355/ISIJINTERNATIONAL.46.586

关键词:

摘要: As one of the most important characteristics structural steels, toughness is assessed by Charpy V-notch impact test. The absorbed energy and transition temperature defined at a given level are regarded as common criteria for assessment. This paper aims establishing generic prediction models which link materials compositions processing conditions with properties. Hybrid knowledge-based neural-fuzzy modelling techniques incorporate linguistic knowledge into data-driven have been used to develop properties thermo-mechanical control process (TMCP) steels. Two basic ways incorporation discussed improve performance obtained fuzzy models. Simulation experiments show that both numeric data information can be combined in unified framework (ITT) predicted same model.

参考文章(8)
D. Dunne, H. Tsuei, Z. Sterjovski, Artificial Neural Networks for Modelling of the Impact Toughness of Steel Isij International. ,vol. 44, pp. 1599- 1607 ,(2004) , 10.2355/ISIJINTERNATIONAL.44.1599
Min-You Chen, D.A. Linkens, Rule-base self-generation and simplification for data-driven fuzzy models Fuzzy Sets and Systems. ,vol. 142, pp. 243- 265 ,(2004) , 10.1016/S0165-0114(03)00160-X
M.-Y. Chen, D. A. Linkens, D. J. Howarth, J. H. Beynon, Fuzzy Model-based Charpy Impact Toughness Assessment for Ship Steels Isij International. ,vol. 44, pp. 1108- 1113 ,(2004) , 10.2355/ISIJINTERNATIONAL.44.1108
M.T Todinov, M Novovic, P Bowen, J.F Knott, Modelling the impact energy in the ductile/brittle transition region of C-Mn multi-run welds Materials Science and Engineering A-structural Materials Properties Microstructure and Processing. ,vol. 287, pp. 116- 124 ,(2000) , 10.1016/S0921-5093(00)00824-8
D.A. Linkens, Min-You Chen, Input selection and partition validation for fuzzy modelling using neural network Fuzzy Sets and Systems. ,vol. 107, pp. 299- 308 ,(1999) , 10.1016/S0165-0114(97)00322-9
M. Setnes, H. Roubos, GA-fuzzy modeling and classification: complexity and performance IEEE Transactions on Fuzzy Systems. ,vol. 8, pp. 509- 522 ,(2000) , 10.1109/91.873575
Chia-Feng Juang, Chin-Teng Lin, An online self-constructing neural fuzzy inference network and its applications IEEE Transactions on Fuzzy Systems. ,vol. 6, pp. 12- 32 ,(1998) , 10.1109/91.660805
A. Needleman, V. Tvergaard, Numerical modeling of the ductile-brittle transition International Journal of Fracture. ,vol. 101, pp. 73- 97 ,(2000) , 10.1023/A:1007520917244