The Imbedding Problem for Finite Markov Chains

作者: Søren Johansen

DOI: 10.1007/978-94-010-2675-8_13

关键词:

摘要: The problem of characterizing the stochastic matrices which can occur in a continuous time Markov chain was first formulated by Elfving 1937, see [7 ] and [8 ]. mentioned Chung 1960, [ 1 p 203, last 10 years number papers have appeared.

参考文章(27)
Per Martin-L�f, Probability theory on discrete semigroups Probability Theory and Related Fields. ,vol. 4, pp. 78- 102 ,(1965) , 10.1007/BF00535486
B. W. Gnedenko, A. N. Kolmogorov, Grenzverteilungen von Summen unabhängiger Zufallsgrössen Akademie-Verlag. ,(1959)
P. Whittle, Kai Lai Chung, Markov chains with stationary transition probabilities Journal of the Royal Statistical Society. Series A (General). ,vol. 125, pp. 494- 494 ,(1960) , 10.2307/2982422
V. M. Maksimov, Divisible Distributions on Finite Groups Theory of Probability & Its Applications. ,vol. 16, pp. 308- 322 ,(1971) , 10.1137/1116028
S. Johansen, An application of extreme point methods to the representation of infinitely divisible distributions Probability Theory and Related Fields. ,vol. 5, pp. 304- 316 ,(1966) , 10.1007/BF00535361
David G. Kendall, Delphic semi-groups, infinitely divisible regenerative phenomena, and the arithmetic of p -functions Probability Theory and Related Fields. ,vol. 9, pp. 163- 195 ,(1968) , 10.1007/BF00535637
D. VERE-JONES, FINITE BIVARIATE DISTRIBUTIONS AND SEMIGROUPS OF NON-NEGATIVE MATRICES Quarterly Journal of Mathematics. ,vol. 22, pp. 247- 270 ,(1971) , 10.1093/QMATH/22.2.247
J. F. C. Kingman, The imbedding problem for finite Markov chains Probability Theory and Related Fields. ,vol. 1, pp. 14- 24 ,(1962) , 10.1007/BF00531768
James R. Cuthbert, The Logarithm Function for Finite-State Markov Semi-Groups Journal of the London Mathematical Society. ,vol. s2-6, pp. 524- 532 ,(1973) , 10.1112/JLMS/S2-6.3.524
V. M. Maksimov, Random Processes with Independent Increments with Values in an Arbitrary Finite Group Theory of Probability & Its Applications. ,vol. 15, pp. 215- 228 ,(1970) , 10.1137/1115029