The tuberculosis necrotizing toxin kills macrophages by hydrolyzing NAD.

作者: Jim Sun , Axel Siroy , Ravi K Lokareddy , Alexander Speer , Kathryn S Doornbos

DOI: 10.1038/NSMB.3064

关键词:

摘要: Mycobacterium tuberculosis (Mtb) induces necrosis of infected cells to evade immune responses. Recently, we found that Mtb uses the protein CpnT kill human macrophages by secreting its C-terminal domain, named necrotizing toxin (TNT), which an unknown mechanism. Here show TNT gains access cytosol Mtb-infected macrophages, where it hydrolyzes essential coenzyme NAD(+). Expression or injection a noncatalytic mutant showed no cytotoxicity in zebrafish zygotes, respectively, thus demonstrating NAD(+) glycohydrolase activity is required for TNT-induced cell death. To prevent self-poisoning, produces immunity factor (IFT) binds and inhibits activity. The crystal structure TNT-IFT complex revealed new fold TNT, founding member family widespread pathogenic microorganisms.

参考文章(69)
KP GOPINATHAN, M SIRSI, T RAMAKRISHNAN, Nicotinamide–adenine nucleotides of Mycobacterium tuberculosis H37RV Biochemical Journal. ,vol. 87, pp. 444- 448 ,(1963) , 10.1042/BJ0870444
KP Gopinathan, M Sirsi, CS Vaidyanathan, Nicotinamide-adenine dinucleotide glycohydrolase of Mycobacterium tuberculosis H37Rv Biochemical Journal. ,vol. 91, pp. 277- 282 ,(1964) , 10.1042/BJ0910277
Maziar Divangahi, Samuel M. Behar, Heinz Remold, Dying to live: how the death modality of the infected macrophage affects immunity to tuberculosis. Advances in Experimental Medicine and Biology. ,vol. 783, pp. 103- 120 ,(2013) , 10.1007/978-1-4614-6111-1_6
Zbyszek Otwinowski, Wladek Minor, Processing of X-ray diffraction data collected in oscillation mode Methods in Enzymology. ,vol. 276, pp. 307- 326 ,(1997) , 10.1016/S0076-6879(97)76066-X
Ka‐Wing Wong, William R. Jacobs Jr, Critical role for NLRP3 in necrotic death triggered by Mycobacterium tuberculosis Cellular Microbiology. ,vol. 13, pp. 1371- 1384 ,(2011) , 10.1111/J.1462-5822.2011.01625.X
J T Barbieri, R J Collier, R K Tweten, Diphtheria toxin. Effect of substituting aspartic acid for glutamic acid 148 on ADP-ribosyltransferase activity. Journal of Biological Chemistry. ,vol. 260, pp. 10392- 10394 ,(1985) , 10.1016/S0021-9258(19)85093-7
James S. Henkel, Michael R. Baldwin, Joseph T. Barbieri, Toxins from bacteria Experientia Supplementum. ,vol. 100, pp. 1- 29 ,(2010) , 10.1007/978-3-7643-8338-1_1
Dennis L. Stevens, Daniel B. Salmi, Eric R. McIndoo, Amy E. Bryant, Molecular Epidemiology of nga and NAD Glycohydrolase/ADP-Ribosyltransferase Activity among Streptococcus pyogenes Causing Streptococcal Toxic Shock Syndrome The Journal of Infectious Diseases. ,vol. 182, pp. 1117- 1128 ,(2000) , 10.1086/315850
Sangita Mukhopadhyay, Shiny Nair, Sudip Ghosh, Pathogenesis in tuberculosis: transcriptomic approaches to unraveling virulence mechanisms and finding new drug targets. Fems Microbiology Reviews. ,vol. 36, pp. 463- 485 ,(2012) , 10.1111/J.1574-6976.2011.00302.X