Bootstrapping General Empirical Measures

作者: Evarist Gine , Joel Zinn

DOI: 10.1214/AOP/1176990862

关键词:

摘要: It is proved that the bootstrapped central limit theorem for empirical processes indexed by a class of functions $\mathscr{F}$ and based on probability measure $P$ holds a.s. if only $\mathscr{F} \in \mathrm{CLT}(P)$ $\int F^2 dP < \infty$, where $F = \sup_{f \mathscr{F}}|f|$, it in \mathrm{CLT}(P)$. Thus, large statistics, no local uniformity CLT (about $P$) needed bootstrap to work. Consistency (the law numbers) also characterized. (These results are under certain weak measurability assumptions $\mathscr{F}$.)

参考文章(21)
Evarist Giné, Michael B. Marcus, Joel Zinn, On Random Multipliers in the Central Limit Theorem with p-stable Limit, 0 < p < 2 Birkhäuser Boston. pp. 120- 149 ,(1990) , 10.1007/978-1-4684-6781-9_7
Evarist Giné, Joel Zinn, Lectures on the central limit theorem for empirical processes Springer Berlin Heidelberg. pp. 50- 113 ,(1986) , 10.1007/BFB0099111
J. Hoffmann-Jørgensen, Stochastic processes on Polish spaces Aarhus Universitet, Matematisk Institut. ,(1991)
Jørgen Hoffmann-Jørgensen, Sums of independent Banach space valued random variables Studia Mathematica. ,vol. 52, pp. 159- 186 ,(1974) , 10.4064/SM-52-2-159-186
S. Szarek, On the best constants in the Khinchin inequality Studia Mathematica. ,vol. 58, pp. 197- 208 ,(1976) , 10.4064/SM-58-2-197-208
Uffe Haagerup, The best constants in the Khintchine inequality Studia Mathematica. ,vol. 70, pp. 231- 283 ,(1981) , 10.4064/SM-70-3-231-283
X. Fernique, Regularite des trajectoires des fonctions aleatoires gaussiennes Springer, Berlin, Heidelberg. pp. 1- 96 ,(1975) , 10.1007/BFB0080190
R. M. Dudley, A course on empirical processes Springer Berlin Heidelberg. pp. 1- 142 ,(1984) , 10.1007/BFB0099432
R.J. Beran, L. Le Cam, P.W. Millar, Convergence of stochastic empirical measures Journal of Multivariate Analysis. ,vol. 23, pp. 159- 168 ,(1987) , 10.1016/0047-259X(87)90183-7
M. Ledoux, M. Talagrand, Un critère sur les petites boules dans le théorème limite central Probability Theory and Related Fields. ,vol. 77, pp. 29- 47 ,(1988) , 10.1007/BF01848129