Modelling intrusions through quiescent and moving ambients

作者: Christopher G. Johnson , Andrew J. Hogg , Herbert E. Huppert , R. Stephen J. Sparks , Jeremy C. Phillips

DOI: 10.1017/JFM.2015.180

关键词:

摘要: Volcanic eruptions commonly produce buoyant ash-laden plumes that rise through the stratified atmosphere. On reaching their level of neutral buoyancy, these cease rising and transition to horizontally spreading intrusions. Such intrusions occur widely in density-stratified fluid environments, this paper we develop a shallow-layer model governs motion. We couple dynamical for particle transport sedimentation, predict both time-dependent distribution ash within volcanic flux falls towards ground. In an otherwise quiescent atmosphere, spread axisymmetrically. find buoyancy-inertial scalings previously identified continuously supplied axisymmetric are not realised by solutions governing equations. By calculating asymptotic our show flow is self-similar, but instead only narrow region at front intrusion. This non-self-similar behaviour results radius intrusion growing with time t as t3/4, rather than t2/3 suggested previously. also identify drag-dominated flow, which described similarity solution radial growth now proportional t5/9. presence ambient wind, axisymmetric. Instead, they predominantly advected downstream, while same laterally thinning vertically due persistent buoyancy forces. close source, lateral regime, whereas far downwind, horizontal forces drive balanced drag. Our emphasise important role buoyancy-driven spreading, even large distances from formation flowing thin extensive layers form atmosphere result eruptions.

参考文章(81)
J. A. Stevenson, S. Loughlin, C. Rae, T. Thordarson, A. E. Milodowski, J. S. Gilbert, S. Harangi, R. Lukács, B. Højgaard, U. Árting, S. Pyne-O'Donnell, A. MacLeod, B. Whitney, M. Cassidy, Distal deposition of tephra from the Eyjafjallajökull 2010 summit eruption Journal of Geophysical Research. ,vol. 117, pp. 1- 10 ,(2012) , 10.1029/2011JB008904
Turbulent gravitational convection from maintained and instantaneous sources Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences. ,vol. 234, pp. 1- 23 ,(1956) , 10.1098/RSPA.1956.0011
LYNNE HATCHER, ANDREW J. HOGG, ANDREW W. WOODS, The effects of drag on turbulent gravity currents Journal of Fluid Mechanics. ,vol. 416, pp. 297- 314 ,(2000) , 10.1017/S002211200000896X
U. Schumann, B. Weinzierl, O. Reitebuch, H. Schlager, A. Minikin, C. Forster, R. Baumann, T. Sailer, K. Graf, H. Mannstein, C. Voigt, S. Rahm, R. Simmet, M. Scheibe, M. Lichtenstern, P. Stock, H. Rüba, D. Schäuble, A. Tafferner, M. Rautenhaus, T. Gerz, H. Ziereis, M. Krautstrunk, C. Mallaun, J.-F. Gayet, K. Lieke, K. Kandler, M. Ebert, S. Weinbruch, A. Stohl, J. Gasteiger, S. Groß, V. Freudenthaler, M. Wiegner, A. Ansmann, M. Tesche, H. Olafsson, K. Sturm, Airborne observations of the Eyjafjalla volcano ash cloud over Europe during air space closure in April and May 2010 Atmospheric Chemistry and Physics. ,vol. 11, pp. 2245- 2279 ,(2011) , 10.5194/ACP-11-2245-2011
Estela Collini, María Soledad Osores, Arnau Folch, José G. Viramonte, Gustavo Villarosa, Graciela Salmuni, Volcanic ash forecast during the June 2011 Cordón Caulle eruption Natural Hazards. ,vol. 66, pp. 389- 412 ,(2013) , 10.1007/S11069-012-0492-Y
Takehito Suzuki, Teruo Yamashita, Dynamic modeling of slow earthquakes based on thermoporoelastic effects and inelastic generation of pores Journal of Geophysical Research. ,vol. 114, ,(2009) , 10.1029/2008JB006042
Christopher G. Johnson, Andrew J. Hogg, Entraining gravity currents Journal of Fluid Mechanics. ,vol. 731, pp. 477- 508 ,(2013) , 10.1017/JFM.2013.329
DIOGO BOLSTER, ALICE HANG, P. F. LINDEN, The front speed of intrusions into a continuously stratified medium Journal of Fluid Mechanics. ,vol. 594, pp. 369- 377 ,(2008) , 10.1017/S0022112007008993