Fractional quaternion Fourier transform, convolution and correlation

作者: Xu Guanlei , Wang Xiaotong , Xu Xiaogang

DOI: 10.1016/J.SIGPRO.2008.04.012

关键词:

摘要: The concept of fractional quaternion Fourier transform (FRQFT) is defined in this paper, and the reversibility property, linear odd-even invariant additivity property other properties are presented. Meanwhile, convolution (FRQCV), correlation (FRQCR) product theorem deduced, their physical interpretations given as classical convolution, theorem. Moreover, fast algorithms FRQFT (FFRQFT) yielded well. In addition, we have discovered relationship between domain, so that can be implemented via domain using (FFT). Our paper proved computation complexities FRQFT, FRQCV FRQCR similar to FFT.

参考文章(21)
S.J. Sangwine, T. Ell, Hypercomplex auto- and cross-correlation of color images international conference on image processing. ,vol. 4, pp. 319- 322 ,(1999) , 10.1109/ICIP.1999.819603
H. Stark, An extension of the Hilbert transform product theorem Proceedings of the IEEE. ,vol. 59, pp. 1359- 1360 ,(1971) , 10.1109/PROC.1971.8420
Soo-Chang Pei, Jian-Jiun Ding, Ja-Han Chang, Efficient implementation of quaternion Fourier transform, convolution, and correlation by 2-D complex FFT IEEE Transactions on Signal Processing. ,vol. 49, pp. 2783- 2797 ,(2001) , 10.1109/78.960426
A. S. Hardy, Aelx S. Christie, Elements of Quaternions ,(1969)
A.I. Zayed, A convolution and product theorem for the fractional Fourier transform IEEE Signal Processing Letters. ,vol. 5, pp. 101- 103 ,(1998) , 10.1109/97.664179
S.L. Hahn, Multidimensional complex signals with single-orthant spectra Proceedings of the IEEE. ,vol. 80, pp. 1287- 1300 ,(1992) , 10.1109/5.158601
L.B. Almeida, Product and Convolution Theorems for the Fractional Fourier Transform IEEE Signal Processing Letters. ,vol. 4, pp. 15- 17 ,(1997) , 10.1109/97.551689
David H. Bailey, Paul N. Swarztrauber, The Fractional Fourier Transform and Applications SIAM Review. ,vol. 33, pp. 389- 404 ,(1991) , 10.1137/1033097