Prediction and optimization of runoff via ANFIS and GA

作者: DK Ghose , SS Panda , PC Swain , None

DOI: 10.1016/J.AEJ.2013.01.001

关键词:

摘要: Abstract In planning of water resource projects, the estimation availability plays an important role. The first step in is computation runoff resulting from precipitation on river catchments. length measured a stream may be short period or long depending upon catchment characteristics. Keeping this mind present work focused two different model generation. phase study, rating curves are developed considering day level ( H t )) as input and Q output. second study prediction models 1 day lag  − 1)), 2 day  − 2))  − 1)) inputs ahead  + 1)) output model. Models used for Non-Linear Multiple Regression (NLMR) Adaptive Neuro-Fuzzy Inference System (ANFIS). Both were trained tested to predict performance models. Genetic Algorithm (GA) then coupled with NLMR obtain condition hydrological parameter which maximum.

参考文章(28)
P.C Nayak, K.P Sudheer, D.M Rangan, K.S Ramasastri, A neuro-fuzzy computing technique for modeling hydrological time series Journal of Hydrology. ,vol. 291, pp. 52- 66 ,(2004) , 10.1016/J.JHYDROL.2003.12.010
H. RAMAN, N. SUNILKUMAR, Multivariate modelling of water resources time series using artificial neural networks Hydrological Sciences Journal-journal Des Sciences Hydrologiques. ,vol. 40, pp. 145- 163 ,(1995) , 10.1080/02626669509491401
Luis Garrote, Rafael L. Bras, A distributed model for real-time flood forecasting using digital elevation models Journal of Hydrology. ,vol. 167, pp. 279- 306 ,(1995) , 10.1016/0022-1694(94)02592-Y
Wesley P. James, Cedric G. Robinson, John F. Bell, Radar‐Assisted Real‐Time Flood Forecasting Journal of Water Resources Planning and Management. ,vol. 119, pp. 32- 44 ,(1993) , 10.1061/(ASCE)0733-9496(1993)119:1(32)
Renji Remesan, Muhammad Ali Shamim, Dawei Han, Jimson Mathew, Runoff prediction using an integrated hybrid modelling scheme Journal of Hydrology. ,vol. 372, pp. 48- 60 ,(2009) , 10.1016/J.JHYDROL.2009.03.034
Konstantine P. Georgakakos, George F. Smith, On improved hydrologic forecasting — Results from a WMO real-time forecasting experiment Journal of Hydrology. ,vol. 114, pp. 17- 45 ,(1990) , 10.1016/0022-1694(90)90073-7
UMESH C. KOTHYARI, Estimation of monthly runoff from small catchments in India Hydrological Sciences Journal-journal Des Sciences Hydrologiques. ,vol. 40, pp. 533- 542 ,(1995) , 10.1080/02626669509491437
A. Sezin Tokar, Momcilo Markus, PRECIPITATION-RUNOFF MODELING USING ARTIFICIAL NEURAL NETWORKS AND CONCEPTUAL MODELS Journal of Hydrologic Engineering. ,vol. 5, pp. 156- 161 ,(2000) , 10.1061/(ASCE)1084-0699(2000)5:2(156)
Patrick Carriere, Shahab Mohaghegh, Razi Gaskari, Performance of a Virtual Runoff Hydrograph System Journal of Water Resources Planning and Management. ,vol. 122, pp. 421- 427 ,(1996) , 10.1061/(ASCE)0733-9496(1996)122:6(421)
Konda Thirumalaiah, M. C. Deo, River Stage Forecasting Using Artificial Neural Networks Journal of Hydrologic Engineering. ,vol. 3, pp. 26- 32 ,(1998) , 10.1061/(ASCE)1084-0699(1998)3:1(26)