Inelastic extended-electron–localized-vibrational-state scattering rate

作者: Ora Entin-Wohlman , S. Alexander , R. Orbach

DOI: 10.1103/PHYSREVB.32.8007

关键词:

摘要: We calculate the inelastic scattering rate of extended-electronic states off localized-vibrational states. perform calculation for electrons on a fractal lattice interacting with either fractons, or phonons. show that respective rates have quite different temperature dependences, allowing one to distinguish between two forms excitations. dependence electronic fractons both degenerate and nondegenerate electron statistics.The statistics is proportional ${T}^{(2d\mathrm{\ensuremath{-}}\mathrm{theta})/(2+\mathrm{theta})}$, where theta exponent involved in range force constant, d Euclidean embedding dimension. This d=2 varies as (approximately) ${T}^{8/7}$ percolation network scalar forces, ${T}^{5/19}$ central bending opposed ${T}^{2}$ phonon excitations (both extended localized).For statistics, fracton regime ${\mathrm{Tk}}^{d\mathrm{\ensuremath{-}}2\mathrm{\ensuremath{-}}\mathrm{theta}}$, k wave vector. For k\ensuremath{\propto}${T}^{1/2}$, this leads ${T}^{(d/2)\mathrm{\ensuremath{-}}\mathrm{theta}}$\ensuremath{\sim}${T}^{1/5}$ percolating ${T}^{\mathrm{\ensuremath{-}}7/4}$ linear obtained case excitations, ${T}^{d}$${\ensuremath{\omega}}_{c}^{(1\mathrm{\ensuremath{-}}d)\mathrm{theta}/(2+\mathrm{theta})}$. it ${\mathrm{Tk}}^{d\mathrm{\ensuremath{-}}2}$${\ensuremath{\xi}}^{\mathrm{theta}}$. Here, ${\ensuremath{\omega}}_{c}$ crossover frequency separating from regime, \ensuremath{\xi} corresponding characteristic length. The results are conveniently expressed form scaling relations.

参考文章(25)
S. Alexander, R. Orbach, Density of states on fractals : « fractons » Journal de Physique Lettres. ,vol. 43, pp. 625- 631 ,(1982) , 10.1051/JPHYSLET:019820043017062500
R. Rammal, G. Toulouse, Random walks on fractal structures and percolation clusters Journal de Physique Lettres. ,vol. 44, pp. 13- 22 ,(1983) , 10.1051/JPHYSLET:0198300440101300
S. Alexander, Is the elastic energy of amorphous materials rotationally invariant Journal De Physique. ,vol. 45, pp. 1939- 1945 ,(1984) , 10.1051/JPHYS:0198400450120193900
Shechao Feng, Pabitra N. Sen, Percolation on Elastic Networks: New Exponent and Threshold Physical Review Letters. ,vol. 52, pp. 216- 219 ,(1984) , 10.1103/PHYSREVLETT.52.216
Shechao Feng, Percolation properties of granular elastic networks in two dimensions. Physical Review B. ,vol. 32, pp. 510- 513 ,(1985) , 10.1103/PHYSREVB.32.510
Itzhak Webman, Gary S. Grest, Dynamical behavior of fractal structures Physical Review B. ,vol. 31, pp. 1689- 1692 ,(1985) , 10.1103/PHYSREVB.31.1689
David J. Bergman, Yacov Kantor, Critical Properties of an Elastic Fractal Physical Review Letters. ,vol. 53, pp. 511- 514 ,(1984) , 10.1103/PHYSREVLETT.53.511
Sajeev John, H. Sompolinsky, Michael J. Stephen, Localization in a disordered elastic medium near two dimensions Physical Review B. ,vol. 27, pp. 5592- 5603 ,(1983) , 10.1103/PHYSREVB.27.5592
S. Alexander, C. Laermans, R. Orbach, H. M. Rosenberg, Fracton interpretation of vibrational properties of cross-linked polymers, glasses, and irradiated quartz Physical Review B. ,vol. 28, pp. 4615- 4619 ,(1983) , 10.1103/PHYSREVB.28.4615
S. Alexander, Ora Entin-Wohlman, R. Orbach, Relaxation and nonradiative decay in disordered systems. I. One-fracton emission Physical Review B. ,vol. 32, pp. 6447- 6455 ,(1985) , 10.1103/PHYSREVB.32.6447