A Probabilistic Model for Diversifying Recommendation Lists

作者: Yutaka Kabutoya , Tomoharu Iwata , Hiroyuki Toda , Hiroyuki Kitagawa

DOI: 10.1007/978-3-642-37401-2_36

关键词:

摘要: We propose a probabilistic method to diversify the results of collaborative filtering. Recommendation diversity is being studied by many researchers as critical factor that significantly influences user satisfaction. Unlike conventional approaches recommendation diversification, we theoretically derived diversification method. Specifically, our naturally diversifies list maximizing probability selects at most one item from list. For enhanced practicality, formulate model for proposed on three policies — robust estimation, use only purchase history, and elimination any hyperparameters controlling diversity. In this paper, formally demonstrate practically superior methods, experimentally show competitive with methods in terms accuracy

参考文章(23)
Thomas P. Minka, Estimating a Dirichlet Distribution ,(2000)
David M Blei, Andrew Y Ng, Michael I Jordan, None, Latent dirichlet allocation Journal of Machine Learning Research. ,vol. 3, pp. 993- 1022 ,(2003) , 10.5555/944919.944937
Neil Hurley, Mi Zhang, Novelty and Diversity in Top-N Recommendation -- Analysis and Evaluation ACM Transactions on Internet Technology. ,vol. 10, pp. 1- 30 ,(2011) , 10.1145/1944339.1944341
Rodrygo L.T. Santos, Craig Macdonald, Iadh Ounis, Selectively diversifying web search results Proceedings of the 19th ACM international conference on Information and knowledge management - CIKM '10. pp. 1179- 1188 ,(2010) , 10.1145/1871437.1871586
T. L. Griffiths, M. Steyvers, Finding scientific topics Proceedings of the National Academy of Sciences of the United States of America. ,vol. 101, pp. 5228- 5235 ,(2004) , 10.1073/PNAS.0307752101
Shengbo Guo, Scott Sanner, Probabilistic latent maximal marginal relevance international acm sigir conference on research and development in information retrieval. pp. 833- 834 ,(2010) , 10.1145/1835449.1835639
Yiming Yang, Xin Liu, A re-examination of text categorization methods international acm sigir conference on research and development in information retrieval. pp. 42- 49 ,(1999) , 10.1145/312624.312647
Cai-Nicolas Ziegler, Georg Lausen, Lars Schmidt-Thieme, Taxonomy-driven computation of product recommendations conference on information and knowledge management. pp. 406- 415 ,(2004) , 10.1145/1031171.1031252
Rodrygo L.T. Santos, Craig Macdonald, Iadh Ounis, Intent-aware search result diversification international acm sigir conference on research and development in information retrieval. pp. 595- 604 ,(2011) , 10.1145/2009916.2009997
Harr Chen, David R. Karger, Less is more Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval - SIGIR '06. pp. 429- 436 ,(2006) , 10.1145/1148170.1148245