Identifying the High-Value Social Audience from Twitter through Text-Mining Methods

作者: Siaw Ling Lo , David Cornforth , Raymond Chiong

DOI: 10.1007/978-3-319-13359-1_26

关键词:

摘要: Doing business on social media has become a common practice for many companies these days. While the contents shared Twitter and Facebook offer plenty of opportunities to uncover insights, it remains challenge sift through huge amount data identify potential audience who is highly likely be interested in particular company. In this paper, we analyze content an account owner its list followers various text mining methods, which include fuzzy keyword matching, statistical topic modeling machine learning approaches. We use tweets segment group high-value members. This enables spend resources more effectively by sending offers right hence maximize marketing efficiency improve return investment.

参考文章(21)
Alexandre Passant, Denny Vrandecic, John G. Breslin, Social Semantic Web. Handbook of Semantic Web Technologies. pp. 467- 506 ,(2011)
Yongzheng Zhang, Marco Pennacchiotti, Predicting purchase behaviors from social media Proceedings of the 22nd international conference on World Wide Web - WWW '13. pp. 1521- 1532 ,(2013) , 10.1145/2488388.2488521
David M Blei, Andrew Y Ng, Michael I Jordan, None, Latent dirichlet allocation Journal of Machine Learning Research. ,vol. 3, pp. 993- 1022 ,(2003) , 10.5555/944919.944937
Marianne Lykke, Birger Larsen, Haakon Lund, Peter Ingwersen, Developing a Test Collection for the Evaluation of Integrated Search Lecture Notes in Computer Science. pp. 627- 630 ,(2010) , 10.1007/978-3-642-12275-0_63
Erik Cambria, Thomas Mazzocco, Amir Hussain, Application of multi-dimensional scaling and artificial neural networks for biologically inspired opinion mining biologically inspired cognitive architectures. ,vol. 4, pp. 41- 53 ,(2013) , 10.1016/J.BICA.2013.02.003
Grzegorz Kondrak, Daniel Marcu, Kevin Knight, Cognates can improve statistical translation models Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology companion volume of the Proceedings of HLT-NAACL 2003--short papers - NAACL '03. pp. 46- 48 ,(2003) , 10.3115/1073483.1073499
A. Weichselbraun, S. Gindl, A. Scharl, Enriching semantic knowledge bases for opinion mining in big data applications Knowledge Based Systems. ,vol. 69, pp. 78- 85 ,(2014) , 10.1016/J.KNOSYS.2014.04.039
Peter Willett, The Porter stemming algorithm: then and now Program: Electronic Library and Information Systems. ,vol. 40, pp. 219- 223 ,(2006) , 10.1108/00330330610681295
Kristina Toutanova, Christopher D. Manning, Enriching the Knowledge Sources Used in a Maximum Entropy Part-of-Speech Tagger empirical methods in natural language processing. pp. 63- 70 ,(2000) , 10.3115/1117794.1117802
Anton Akusok, Rui Nian, Victor C.M. Leung, Amaury Lendasse, Sergio Decherchi, Andrew Beng Jin Teoh, Paolo Gastaldo, Liyanaarachchi Lekamalage Chamara Kasun, Liang Feng, Jaihie Kim, Guang-Bin Huang, Junfa Liu, Jiarun Lin, Chi Man Vong, Yew-Soon Ong, Francesco Corona, Kar-Ann Toh, Yiqiang Chen, Jianping Yin, Rodolfo Zunino, Hanchao Yu, Jehyoung Jeon, Beom-Seok Oh, Xuefeng Yang, Kezhi Mao, Meng-Hiot Lim, Hongming Zhou, Zhiping Cai, Yoan Miche, Qiang Liu, Erik Cambria, Kuan Li, Extreme Learning Machine ,(2013)