Uniformly Quasiregular Maps on the Compactified Heisenberg Group

作者: Zoltán M. Balogh , Katrin Fässler , Kirsi Peltonen

DOI: 10.1007/S12220-010-9205-5

关键词:

摘要: We show the existence of a non-injective uniformly quasiregular mapping acting on one-point compactification \(\bar{ {\mathbb{H}}}^{1}={\mathbb{H}}^{1}\cup\{\infty\}\) Heisenberg group ℍ1 equipped with sub-Riemannian metric. The corresponding statement for arbitrary mappings sphere \({\mathbb{S}}^{n} \) was proven by Martin (Conform. Geom. Dyn. 1:24–27, 1997). Moreover, we construct {\mathbb{H}}}^{1}\) large-dimensional branch sets. prove that any map g there exists measurable CR structure μ which is equivariant under semigroup Γ generated g. This equivalent to an horizontal conformal structure.

参考文章(42)
Adam Korányi, Hans Martin Reimann, Quasiconformal mappings on CR manifolds Springer, Berlin, Heidelberg. pp. 59- 75 ,(1990) , 10.1007/BFB0089405
S. K. Vodop'yanov, Mappings with bounded distortion and with finite distortion on Carnot groups Siberian Mathematical Journal. ,vol. 40, pp. 644- 677 ,(1999) , 10.1007/BF02675667
Sorin Dragomir, Giuseppe Tomassini, Differential Geometry and Analysis on CR Manifolds ,(2006)
Mikhael Gromov, Carnot-Carathéodory spaces seen from within Birkhäuser Basel. pp. 79- 323 ,(1996) , 10.1007/978-3-0348-9210-0_2
Pekka Koskela, Zolt�n M. Balogh, spaces. Appendice par Jussi V�is�l� Duke Mathematical Journal. ,vol. 101, pp. 555- 577 ,(2000) , 10.1215/S0012-7094-00-10138-X
Robert S. Strichartz, Sub-Riemannian geometry Journal of Differential Geometry. ,vol. 24, pp. 221- 263 ,(1986) , 10.4310/JDG/1214440436
L. Nirenberg, On elliptic partial differential equations Annali Della Scuola Normale Superiore Di Pisa-classe Di Scienze. ,vol. 13, pp. 115- 162 ,(1959) , 10.1007/978-3-642-10926-3_1
Juha Heinonen, Stephen Semmes, Thirty-three yes or no questions about mappings, measures, and metrics Conformal Geometry and Dynamics of The American Mathematical Society. ,vol. 1, pp. 1- 12 ,(1997) , 10.1090/S1088-4173-97-00012-X