Solving One-dimensional Hyperbolic Telegraph Equation Using Cubic B-spline Quasi-interpolation

作者: Marzieh Dosti , Alireza Nazemi

DOI:

关键词:

摘要: In this paper, the telegraph equation is solved numerically by cubic B-spline quasi-interpolation .We obtain numerical scheme, using derivative of to approximate spatial dependent variable and a low order forward difference temporal variable. The advantage resulting scheme that algorithm very simple so it easy implement. results experiments are presented, compared with analytical solutions calculating errors L2 L∞ norms confirm good accuracy presented scheme. Keywords—Cubic B-spline, quasi-interpolation, collocation method, second-order hyperbolic equation.

参考文章(24)
Gheorghe Micula, Sanda Micula, Handbook of Splines ,(2012)
Sebastián Montiel, Antonio Ros, Curves and surfaces ,(2005)
Sam Howison, A. B. Movchan, Andrew Lacey, J. R Ockendon, Applied Partial Differential Equations ,(1999)
M.K. Kadalbajoo, Puneet Arora, B-spline collocation method for the singular-perturbation problem using artificial viscosity Computers & Mathematics With Applications. ,vol. 57, pp. 650- 663 ,(2009) , 10.1016/J.CAMWA.2008.09.008
Chun-Gang Zhu, Ren-Hong Wang, Numerical solution of Burgers–Fisher equation by cubic B-spline quasi-interpolation Applied Mathematics and Computation. ,vol. 216, pp. 2679- 2686 ,(2009) , 10.1016/J.AMC.2008.11.045
Feng Gao, Chun-Mei Chi, Solving third-order obstacle problems with quartic B-splines Applied Mathematics and Computation. ,vol. 180, pp. 270- 274 ,(2006) , 10.1016/J.AMC.2005.12.012
Fazal-i-Haq, Siraj-ul-Islam, Ikram A. Tirmizi, A numerical technique for solution of the MRLW equation using quartic B-splines Applied Mathematical Modelling. ,vol. 34, pp. 4151- 4160 ,(2010) , 10.1016/J.APM.2010.04.012
Bülent Saka, İdris DaĞ, Quartic B-spline Galerkin approach to the numerical solution of the KdVB equation Applied Mathematics and Computation. ,vol. 215, pp. 746- 758 ,(2009) , 10.1016/J.AMC.2009.05.059
P. M. Jordan, Martin R. Meyer, Ashok Puri, Causal implications of viscous damping in compressible fluid flows Physical Review E. ,vol. 62, pp. 7918- 7926 ,(2000) , 10.1103/PHYSREVE.62.7918