Identifying task groups for organizing search results

作者: Farid Hosseini , Brian Macdonald , Sarthak Shah , Michael Cameron , Adam Troy

DOI:

关键词:

摘要: Computer-readable media and computerized methods for automatically organizing search results according to task groups are provided. The involve aggregating a gallery of entities (e.g., queries that share common categorization) into query class assigning dictionary list terms drawn from various sources) the class. identified within dictionary. process identification includes analyzing patterns user behavior select terms, which reflect popular intents, ranking selected based on predetermined parameters produce an ordering. Based ordering, set highest ranked declared groups. employed arrange UI display provide consistent intuitive format refining search.

参考文章(16)
Imran Aziz, Mackenzie Steele, Intent based search ,(2006)
Generating and Browsing Multiple Taxonomies Over a Document Collection Journal of Management Information Systems. ,vol. 19, pp. 191- 212 ,(2003) , 10.1080/07421222.2003.11045749
William B. Dolan, Stephen D. Richardson, Jessie E. Pinkman, Aurl A. Menezes, Scaleable machine translation ,(2005)
Patrick John Graydon, Yuri Adrian Tijerino, Lei Wang, Maureen Caudill, Justin Eliot Busch, Bryner Sabido Pancho, Kenneth Scott Klein, Nancy Ann Chinchor, Albert Deirchow Lin, Jason Chung-Ming Tseng, Concept-based search and retrieval system ,(2000)
Peter G. Anick, Alastair Gourlay, John Joseph Thrall, Systems and methods for interactive search query refinement ,(2004)
Kuldeep Karnawat, Paul M. Malolepsy, Mark B. Mydland, Blake E. Anderson, Jennifer J. Marsman, James C. Finger, Thomas D. White, Forming intent-based clusters and employing same by search ,(2004)
Bernard J. Jansen, Danielle L. Booth, Amanda Spink, Determining the informational, navigational, and transactional intent of Web queries Information Processing & Management. ,vol. 44, pp. 1251- 1266 ,(2008) , 10.1016/J.IPM.2007.07.015
Markus Strohmaier, Mark Kröll, Christian Körner, Intentional query suggestion Proceedings of the 2009 workshop on Web Search Click Data - WSCD '09. pp. 68- 74 ,(2009) , 10.1145/1507509.1507520