Dirac geometry, quasi-Poisson actions and D/G-valued moment maps

作者: Henrique Bursztyn , Marius Crainic

DOI: 10.4310/JDG/1251122545

关键词:

摘要: We study Dirac structures associated with Manin pairs (d, g) and give a geometric approach to Hamiltonian spaces D/G-valued moment maps, originally introduced by Alekseev Kosmann-Schwarzbach [3] in terms of quasi-Poisson structures. explain how these two distinct frameworks are related each other, proving that they lead isomorphic categories spaces. stress the connection between viewpoint geometry equivariant differential forms. The paper discusses various examples, including q-Hamiltonian Poisson-Lie group actions, explaining presymplectic groupoids notion “double” context.

参考文章(32)
Henrique Bursztyn, Marius Crainic, Quasi-Poisson structures as Dirac structures ,(2005)
Henrique Bursztyn, Marius Crainic, Dirac structures, momentum maps, and quasi-Poisson manifolds arXiv: Differential Geometry. pp. 1- 40 ,(2005) , 10.1007/0-8176-4419-9_1
Leonid I. Korogodski, Yan S. Soibelman, Algebras of functions on quantum groups American Mathematical Society. ,(1998)
Jiang-Hua Lu, Momentum Mappings And Reduction of Poisson Actions Mathematical Sciences Research Institute Publications. pp. 209- 226 ,(1991) , 10.1007/978-1-4613-9719-9_15
Alan Weinstein, Lectures on Symplectic Manifolds ,(1977)
Dmitry Roytenberg, Courant algebroids, derived brackets and even symplectic supermanifolds arXiv: Differential Geometry. ,(1999)
Anton Alekseev, Yvette Kosmann-Schwarzbach, Manin Pairs and Moment Maps Journal of Differential Geometry. ,vol. 56, pp. 133- 165 ,(2000) , 10.4310/JDG/1090347528
Anton Alekseev, Anton Malkin, Eckhard Meinrenken, Lie group valued moment maps Journal of Differential Geometry. ,vol. 48, pp. 445- 495 ,(1998) , 10.4310/JDG/1214460860
Yvette Kosmann-Schwarzbach, Quasi, twisted, and all that... in Poisson geometry and Lie algebroid theory arXiv: Symplectic Geometry. pp. 363- 389 ,(2005) , 10.1007/0-8176-4419-9_12