Polarization Fields in the Variational Analysis of the Linear Plezoelectric Problem

作者: P. Bisegna , F. Maceri

DOI: 10.1007/978-1-4613-0287-2_12

关键词:

摘要: Some new variational formulations, based on the use of polarization fields, are developed for fundamental problem linear theory piezoelectricity.

参考文章(17)
Gaetano Fichera, Existence Theorems in Elasticity Linear Theories of Elasticity and Thermoelasticity. pp. 347- 389 ,(1973) , 10.1007/978-3-662-39776-3_3
Lev Davidovič Landau, Evgenij M. Lifšic, Course of Theoretical Physics ,(2013)
Wang Biao, Three-dimensional analysis of an ellipsoidal inclusion in a piezoelectric material International Journal of Solids and Structures. ,vol. 29, pp. 293- 308 ,(1992) , 10.1016/0020-7683(92)90201-4
T. Mura, D. M. Barnett, Micromechanics of defects in solids ,(1982)
M.L. Dunn, M. Taya, Micromechanics predictions of the effective electroelastic moduli of piezoelectric composites International Journal of Solids and Structures. ,vol. 30, pp. 161- 175 ,(1993) , 10.1016/0020-7683(93)90058-F
L. D. Landau, J. S. Bell, J. B. Sykes, E. H. Dill, E. M. Lifshitz, Electrodynamics of continuous media ,(1960)
Paolo Bisegna, Raimondo Luciano, Variational bounds for the overall properties of piezoelectric composites Journal of The Mechanics and Physics of Solids. ,vol. 44, pp. 583- 602 ,(1996) , 10.1016/0022-5096(95)00084-4
Jun Liang, Jiecai Han, Biao Wang, Shanyi Du, Electroelastic modelling of anisotropic piezoelectric materials with an elliptic inclusion International Journal of Solids and Structures. ,vol. 32, pp. 2989- 3000 ,(1995) , 10.1016/0020-7683(94)00299-C
M.Y. Chung, T.C.T. Ting, Piezoelectric solid with an elliptic inclusion or hole International Journal of Solids and Structures. ,vol. 33, pp. 3343- 3361 ,(1996) , 10.1016/0020-7683(95)00189-1