Density Matrix Methods in Linear Scaling Electronic Structure Theory

作者: Anders M. N. Niklasson

DOI: 10.1007/978-90-481-2853-2_16

关键词:

摘要: We review some recursive Fermi operator expansion techniques for the calculation of density matrix and its response to perturbations in tight-binding, Hartree-Fock, or functional theory, at zero finite electronic temperatures. Thanks formulation, order increases exponentially with number iterations computational cost scales only linearly system size sufficiently large sparse representations. The methods are illustrated using simple models that suitable small numerical experiments.

参考文章(137)
Valéry Weber, Anders M. N. Niklasson, Matt Challacombe, Higher-order response in O(N) by perturbed projection The Journal of Chemical Physics. ,vol. 123, pp. 044106- 044106 ,(2005) , 10.1063/1.1944724
Valéry Weber, Jürg Hutter, A smooth ℓ1-norm sparseness function for orbital based linear scaling total energy minimization Journal of Chemical Physics. ,vol. 128, pp. 064107- 064107 ,(2008) , 10.1063/1.2828507
Sonia Frota-Pesso^a, First-principles real-space linear-muffin-tin-orbital calculations of 3d impurities in Cu Physical Review B. ,vol. 46, pp. 14570- 14577 ,(1992) , 10.1103/PHYSREVB.46.14570
Weitao Yang, Direct calculation of electron density in density-functional theory. Physical Review Letters. ,vol. 66, pp. 1438- 1441 ,(1991) , 10.1103/PHYSREVLETT.66.1438
B O Cankurtaran, J D Gale, M J Ford, First principles calculations using density matrix divide-and-conquer within the SIESTA methodology Journal of Physics: Condensed Matter. ,vol. 20, pp. 294208- ,(2008) , 10.1088/0953-8984/20/29/294208
Matt Challacombe, A simplified density matrix minimization for linear scaling self-consistent field theory Journal of Chemical Physics. ,vol. 110, pp. 2332- 2342 ,(1999) , 10.1063/1.477969
X.-P. Li, R. W. Nunes, David Vanderbilt, Density-matrix electronic-structure method with linear system-size scaling. Physical Review B. ,vol. 47, pp. 10891- 10894 ,(1993) , 10.1103/PHYSREVB.47.10891