A convergent asymptotic expansion for Mill's ratio and the normal probability integral in terms of rational functions

作者: Harold Ruben

DOI: 10.1007/BF01470826

关键词:

摘要:

参考文章(16)
Pierre Simon Laplace (marq. de.), Théorie analytique des probabilités Paris : V. Courcier. ,(1995)
George Pólya, Remarks on Computing the Probability Integral in One and Two Dimensions Proceedings of the [First] Berkeley Symposium on Mathematical Statistics and Probability. pp. 63- 78 ,(1949)
Z. W. Birnbaum, Effect of Linear Truncation on a Multinormal Population Annals of Mathematical Statistics. ,vol. 21, pp. 272- 279 ,(1950) , 10.1214/AOMS/1177729844
Robert F. Tate, On a Double Inequality of the Normal Distribution Annals of Mathematical Statistics. ,vol. 24, pp. 132- 134 ,(1953) , 10.1214/AOMS/1177729094
D. F. Barrow, A. C. Cohen, On Some Functions Involving Mill's Ratio Annals of Mathematical Statistics. ,vol. 25, pp. 405- 408 ,(1954) , 10.1214/AOMS/1177728801
M. R. Sampford, Some Inequalities on Mill's Ratio and Related Functions Annals of Mathematical Statistics. ,vol. 24, pp. 130- 132 ,(1953) , 10.1214/AOMS/1177729093
T.-J. Stieltjes, Recherches sur les fractions continues Annales de la Faculté des Sciences de Toulouse. ,vol. 8, pp. 1- 122 ,(1995) , 10.5802/AFST.108