Minimax Differentiability via the Averaged Adjoint for Control/Shape Sensitivity*

作者: Michel C. Delfour , Kevin Sturm

DOI: 10.1016/J.IFACOL.2016.07.436

关键词:

摘要: Abstract A standard approach to the minimization of a state constrained objective function in Control/Shape Optimization problems is consider minimax associated Lagrangian. In this paper, construction used obtain semidifferential (sensitivity analysis) with respect control/shape variable function. By using new notion averaged adjoint Sturm (2014, 2015), problem need not be related saddle point: non-convex functions and non-linear equations can directly considered. We firstly provide version condition secondly an extension from single valued case where solutions state/averaged are unique which non-differentiability occur.

参考文章(12)
Michel Delfour, Jean-Paul Zolsio, Shapes and Geometries: Metrics, Analysis, Differential Calculus, and Optimization Society for Industrial and Applied Mathematics. ,(2010)
J Frédéric Bonnans, Alexander Shapiro, Perturbation Analysis of Optimization Problems ,(2000)
Pascal Auscher, Philippe Tchamitchian, Square root problem for divergence operators and related topics Société mathématique de France. ,(1998)
J. Sokolowski, A. Zochowski, On the Topological Derivative in Shape Optimization Siam Journal on Control and Optimization. ,vol. 37, pp. 1251- 1272 ,(1999) , 10.1137/S0363012997323230
John M. Danskin, The Theory of Max-Min, with Applications SIAM Journal on Applied Mathematics. ,vol. 14, pp. 641- 664 ,(1966) , 10.1137/0114053
M. C. Delfour, J.-P. Zolésio, Shape Sensitivity Analysis via Min Max Differentiability SIAM Journal on Control and Optimization. ,vol. 26, pp. 834- 862 ,(1988) , 10.1137/0326048
H. A. Eschenauer, V. V. Kobelev, A. Schumacher, Bubble method for topology and shape optimization of structures Structural Optimization. ,vol. 8, pp. 42- 51 ,(1994) , 10.1007/BF01742933
Rafael Correa, Alberto Seeger, Directional derivative of a minimax function Nonlinear Analysis-theory Methods & Applications. ,vol. 9, pp. 13- 22 ,(1985) , 10.1016/0362-546X(85)90049-5
Michel C. Delfour, Metric Spaces of Shapes and Geometries Constructed from Set Parametrized Functions Springer International Publishing. pp. 57- 101 ,(2015) , 10.1007/978-3-319-17563-8_4