Estimation of Parameters in Time‐Series Regression Models

作者: J. Durbin

DOI: 10.1111/J.2517-6161.1960.TB00361.X

关键词:

摘要: We consider the estimation of coefficients in a general linear regression model which some explanatory variables are lagged values dependent variable. For discussing optimum properties concept best unbiased estimating equations is developed. It shown that when errors normally distributed method least squares leads to estimates. The least-squares estimates be same asymptotically as those ordinary models containing no variables, whether or not distributed. Finally, proposed for different has but have an autoregressive structure. efficient large samples.

参考文章(7)
M. G. KENDALL, Regression, structure and functional relationship. Part I. Biometrika. ,vol. 38, pp. 11- 25 ,(1951) , 10.1093/BIOMET/38.1-2.11
D. Cochrane, G. H. Orcutt, Application of Least Squares Regression to Relationships Containing Auto-Correlated Error Terms Journal of the American Statistical Association. ,vol. 44, pp. 32- 61 ,(1949) , 10.1080/01621459.1949.10483290
Harald Cramér, A contribution to the theory of statistical estimation Scandinavian Actuarial Journal. ,vol. 1946, pp. 85- 94 ,(1946) , 10.1080/03461238.1946.10419631
T. W. Anderson, Herman Rubin, The Asymptotic Properties of Estimates of the Parameters of a Single Equation in a Complete System of Stochastic Equations Annals of Mathematical Statistics. ,vol. 21, pp. 570- 582 ,(1950) , 10.1214/AOMS/1177729752
C. Radhakrishna Rao, Advanced Statistical Methods In Biometric Research Birchandra State Central Library,tripura. ,(1952)
H. B. Mann, A. Wald, On the Statistical Treatment of Linear Stochastic Difference Equations Econometrica. ,vol. 11, pp. 173- ,(1943) , 10.2307/1905674
D. G. Champernowne, Sampling Theory Applied to Autoregressive Sequences Journal of the royal statistical society series b-methodological. ,vol. 10, pp. 204- 231 ,(1948) , 10.1111/J.2517-6161.1948.TB00010.X