Chaotic vibrations of size-dependent flexible rectangular plates

作者: J. Awrejcewicz , I. V. Papkova , V. A. Krysko , V. A. KryskoJr.

DOI: 10.1063/5.0044630

关键词:

摘要: A mathematical model describing nonlinear vibrations of size-dependent rectangular plates is proposed. The are treated as the Cosserat continuum with bounded rotations their particles (pseudo-continuum). governing partial differential equations (PDEs) and boundary/initial conditions obtained using von Karman geometric relations, they yielded by energetic Hamilton principle. derived mixed-form PDEs reduced to ordinary algebraic (AEs) (i) Galerkin–Krylov–Bogoliubov method (GKBM) in higher approximations, then solved help a combination Runge–Kutta methods second fourth order, (ii) finite difference (FDM), (iii) Newmark method. convergence FDM vs interval space coordinate grids GKBM number employed terms approximating function investigated. latter approach allows for achieving reliable results taking account almost infinite-degree-of-freedom approximation regular chaotic dynamics studied plates. problem stability loss under harmonic load also tackled.

参考文章(45)
K.F. Wang, T. Kitamura, B. Wang, Nonlinear pull-in instability and free vibration of micro/nanoscale plates with surface energy - A modified couple stress theory model International Journal of Mechanical Sciences. ,vol. 99, pp. 288- 296 ,(2015) , 10.1016/J.IJMECSCI.2015.05.006
A. C. SHIAU, R. S. ROTH, T. T. SOONG, Dynamic Buckling of Conical Shells with Imperfections AIAA Journal. ,vol. 12, pp. 755- 760 ,(1974) , 10.2514/3.49346
Wenming Zhang, Guang Meng, None, Nonlinear dynamical system of micro-cantilever under combined parametric and forcing excitations in MEMS Sensors and Actuators A: Physical. ,vol. 119, pp. 291- 299 ,(2005) , 10.1016/J.SNA.2004.09.025
Kwangho Park, Qingfei Chen, Ying-Cheng Lai, Energy enhancement and chaos control in microelectromechanical systems Physical Review E. ,vol. 77, pp. 026210- ,(2008) , 10.1103/PHYSREVE.77.026210
G.C. Tsiatas, A new Kirchhoff plate model based on a modified couple stress theory International Journal of Solids and Structures. ,vol. 46, pp. 2757- 2764 ,(2009) , 10.1016/J.IJSOLSTR.2009.03.004
Qingfei Chen, Ying-Cheng Lai, Junseok Chae, Younghae Do, Anti-phase synchronization in microelectromechanical systems and effect of impulsive perturbations Physical Review B. ,vol. 87, pp. 144304- ,(2013) , 10.1103/PHYSREVB.87.144304
Gang Li, N.R. Aluru, Linear, nonlinear and mixed-regime analysis of electrostatic MEMS Sensors and Actuators A-physical. ,vol. 91, pp. 278- 291 ,(2001) , 10.1016/S0924-4247(01)00597-0
STEFANIE GUTSCHMIDT, ODED GOTTLIEB, INTERNAL RESONANCES AND BIFURCATIONS OF AN ARRAY BELOW THE FIRST PULL-IN INSTABILITY International Journal of Bifurcation and Chaos. ,vol. 20, pp. 605- 618 ,(2010) , 10.1142/S0218127410025910
Hossein S. Haghighi, Amir H.D. Markazi, Chaos prediction and control in MEMS resonators Communications in Nonlinear Science and Numerical Simulation. ,vol. 15, pp. 3091- 3099 ,(2010) , 10.1016/J.CNSNS.2009.10.002
F. Yang, A.C.M. Chong, D.C.C. Lam, P. Tong, Couple stress based strain gradient theory for elasticity International Journal of Solids and Structures. ,vol. 39, pp. 2731- 2743 ,(2002) , 10.1016/S0020-7683(02)00152-X