Ensemble learning for data stream analysis

作者: Bartosz Krawczyk , Leandro L. Minku , João Gama , Jerzy Stefanowski , Michał Woźniak

DOI: 10.1016/J.INFFUS.2017.02.004

关键词:

摘要: … Ensemble learning from data streams This section discusses supervised data stream ensemble learning … the proposed taxonomy of ensemble learning approaches for data streams in …

参考文章(204)
Indrė Žliobaitė, Albert Bifet, Bernhard Pfahringer, Geoff Holmes, Active Learning with Evolving Streaming Data Machine Learning and Knowledge Discovery in Databases. pp. 597- 612 ,(2011) , 10.1007/978-3-642-23808-6_39
Ludmila I. Kuncheva, Classifier Ensembles for Changing Environments multiple classifier systems. pp. 1- 15 ,(2004) , 10.1007/978-3-540-25966-4_1
Magdalena Deckert, Jerzy Stefanowski, Comparing Block Ensembles for Data Streams with Concept Drift ADBIS Workshops. pp. 69- 78 ,(2013) , 10.1007/978-3-642-32518-2_7
Albert Bifet, Rafael Morales-Bueno, Ricard Gavald, Manuel Baena-Garc, Jose del Campo ¶ Avila, Early Drift Detection Method ,(2005)
Kyosuke Nishida, Koichiro Yamauchi, Detecting Concept Drift Using Statistical Testing Discovery Science. pp. 264- 269 ,(2007) , 10.1007/978-3-540-75488-6_27
Magdalena Deckert, Batch weighted ensemble for mining data streams with concept drift international syposium on methodologies for intelligent systems. pp. 290- 299 ,(2011) , 10.1007/978-3-642-21916-0_32
Pawel Matuszyk, Myra Spiliopoulou, Framework for Storing and Processing Relational Entities in Stream Mining pacific-asia conference on knowledge discovery and data mining. pp. 497- 508 ,(2013) , 10.1007/978-3-642-37456-2_42
Vincent Lemaire, Christophe Salperwyck, Alexis Bondu, A Survey on Supervised Classification on Data Streams Business Intelligence. pp. 88- 125 ,(2015) , 10.1007/978-3-319-17551-5_4
Philip S. Yu, Wei Fan, Haixun Wang, Yi an Huang, Active mining of data streams siam international conference on data mining. pp. 457- 461 ,(2004)
Albert Bifet, Jesse Read, Bernhard Pfahringer, Geoff Holmes, Indrė Žliobaitė, CD-MOA: Change Detection Framework for Massive Online Analysis Advances in Intelligent Data Analysis XII. pp. 92- 103 ,(2013) , 10.1007/978-3-642-41398-8_9