Classical Lie Groups

作者: Joachim Hilgert , Karl-Hermann Neeb

DOI: 10.1007/978-0-387-84794-8_17

关键词:

摘要: In this chapter, we apply the general theory to classical matrix groups such as \(\mathop {\mathrm {GL}}\nolimits _{n}({\mathbb{C}}), \mathop {\rm SL}\nolimits SO}\nolimits Sp}\nolimits _{2n}({\mathbb{C}})\), and some of their real forms provide explicit structural topological information. We will start with compact forms, i.e., U{}}\nolimits _{n}({\mathbb{K}})\) SU}\nolimits _{n}({\mathbb{K}})\), where \({\mathbb{K}}\) is ℝ, ℂ, or ℍ, since many results can be reduced groups.

参考文章(80)
Paolo Piccione, Daniel V. Tausk, Regina C. Nostre Marques, On the Morse and the Maslov index for periodic geodesics of arbitrary causal character ,(2001)
K. Gröchenig, An uncertainty principle related to the Poisson summation formula Studia Mathematica. ,vol. 121, pp. 87- 104 ,(1996) , 10.4064/SM-121-1-87-104
M.W. Wong, Trace-Class Weyl Transforms Birkhäuser Basel. pp. 469- 478 ,(2005) , 10.1007/3-7643-7398-9_24
Israel Gohberg, Seymour Goldberg, Basic Operator Theory ,(1981)
Maurice De Gosson, On the classical and quantum evolution of Lagrangian half-forms in phase space Annales De L Institut Henri Poincare-physique Theorique. ,vol. 70, pp. 547- 573 ,(1999)
A. Y. Khinchin, Aleksandr Iakovlevich Khinchin, Aleksandr Khinchin, Mathematical Foundations of Quantum Statistics ,(1949)
Gerard Lion, Michèle Vergne, The Weil representation, Maslov index and Theta series ,(1980)