Edge-choosability of cubic graphs and the polynomial method

作者: Andrea Marie Spencer

DOI:

关键词:

摘要: A graph is k-edge-choosable if for any assignment of a list at least k colours to each edge, there proper edge-colouring the such that edge assigned colour from its list. Any loopless cubic G known be 4-edge-choosable by an extension Brooks’ Theorem. In this thesis, we give alternative proof relating edge-choosability coefficients certain polynomial using Alon and Tarsi’s Combinatorial Nullstellensatz. We interpret these combinatorially show required edge-colourings exist. Moreover, planar with c cut edges, then all but 3c edges can lists most 3 colours.

参考文章(14)
Noga Alon, Restricted colorings of graphs Surveys in combinatorics, 1993. pp. 1- 33 ,(1993) , 10.1017/CBO9780511662089.002
Bjarne Toft, Tommy R Jensen, Graph Coloring Problems ,(1994)
Douglas Brent West, Introduction to Graph Theory ,(1995)
Roland Häggkvist, Amanda Chetwynd, Some upper bounds on the total and list chromatic numbers of multigraphs Journal of Graph Theory. ,vol. 16, pp. 503- 516 ,(1992) , 10.1002/JGT.3190160510
B. Bollobás, A. J. Harris, List-colourings of graphs Graphs and Combinatorics. ,vol. 1, pp. 115- 127 ,(1985) , 10.1007/BF02582936
F. Galvin, The list chromatic index of a bipartite multigraph Journal of Combinatorial Theory, Series B. ,vol. 63, pp. 153- 158 ,(1995) , 10.1006/JCTB.1995.1011
Arthur A Drisko, On the Number of Even and Odd Latin Squares of Orderp+1 Advances in Mathematics. ,vol. 128, pp. 20- 35 ,(1997) , 10.1006/AIMA.1997.1623
M. N. Ellingham, Luis Goddyn, List edge colourings of some 1-factorable multigraphs Combinatorica. ,vol. 16, pp. 343- 352 ,(1996) , 10.1007/BF01261320
N. Alon, M. Tarsi, Colorings and orientations of graphs Combinatorica. ,vol. 12, pp. 125- 134 ,(1992) , 10.1007/BF01204715