Pattern Graphs: Combining Multivariate Time Series and Labelled Interval Sequences for Classification

作者: Sebastian Peter , Frank Höppner , Michael R. Berthold

DOI: 10.1007/978-3-319-02621-3_1

关键词:

摘要: Classifying multivariate time series is often dealt with by transforming the numeric into labelled intervals, because many pattern representations exist to deal intervals. Finding right preprocessing not only consuming but also critical for success of learning algorithms. In this paper we show how graphs, a powerful language temporal classification rules, can be extended in order handle intervals combination raw series. We thereby reduce dependence on quality and at same increase performance. These benefits are demonstrated experimentally 10 different data sets.

参考文章(13)
Sebastian Peter, Frank Höppner, Michael R. Berthold, Learning pattern graphs for multivariate temporal pattern retrieval intelligent data analysis. pp. 264- 275 ,(2012) , 10.1007/978-3-642-34156-4_25
Teresa M. A. Basile, Nicola Di Mauro, Stefano Ferilli, Floriana Esposito, Relational Temporal Data Mining for Wireless Sensor Networks congress of the italian association for artificial intelligence. pp. 416- 425 ,(2009) , 10.1007/978-3-642-10291-2_42
Sebastian Peter, Frank Hoppner, Michael R. Berthold, Pattern graphs: A knowledge-based tool for multivariate temporal pattern retrieval ieee international conference on intelligent systems. pp. 067- 073 ,(2012) , 10.1109/IS.2012.6335193
Fabian Mörchen, Alfred Ultsch, Optimizing time series discretization for knowledge discovery knowledge discovery and data mining. pp. 660- 665 ,(2005) , 10.1145/1081870.1081953
Fabian Mörchen, Alfred Ultsch, Efficient mining of understandable patterns from multivariate interval time series Data Mining and Knowledge Discovery. ,vol. 15, pp. 181- 215 ,(2007) , 10.1007/S10618-007-0070-1
Fabian Mörchen, Unsupervised pattern mining from symbolic temporal data ACM SIGKDD Explorations Newsletter. ,vol. 9, pp. 41- 55 ,(2007) , 10.1145/1294301.1294302
Michele Berlingerio, Fabio Pinelli, Mirco Nanni, Fosca Giannotti, Temporal mining for interactive workflow data analysis Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD '09. pp. 109- 118 ,(2009) , 10.1145/1557019.1557038
P. Smyth, R.M. Goodman, An information theoretic approach to rule induction from databases IEEE Transactions on Knowledge and Data Engineering. ,vol. 4, pp. 301- 316 ,(1992) , 10.1109/69.149926
Yi-Cheng Chen, Ji-Chiang Jiang, Wen-Chih Peng, Suh-Yin Lee, An efficient algorithm for mining time interval-based patterns in large database conference on information and knowledge management. pp. 49- 58 ,(2010) , 10.1145/1871437.1871448
Iyad Batal, Hamed Valizadegan, Gregory F. Cooper, Milos Hauskrecht, A Pattern Mining Approach for Classifying Multivariate Temporal Data bioinformatics and biomedicine. ,vol. 2011, pp. 358- 365 ,(2011) , 10.1109/BIBM.2011.39