Braid pictures for artin groups

作者: Daniel Allcock

DOI: 10.1090/S0002-9947-02-02944-6

关键词:

摘要: We define the braid groups of a two-dimensional orbifold and introduce conventions for drawing pictures. use these to realize Artin associated spherical Coxeter diagrams A n , B = C D affine as subgroups various simple orbifolds. The cases are new. In each case group is normal subgroup with abelian quotient; in all except quotient finite. also illustrate value our calculus by giving picture-proof basic properties Garside element an type .

参考文章(18)
Robert Arnott Wilson, Simon P. Norton, John Horton Conway, ATLAS of Finite Groups ,(1985)
William P. Thurston, The geometry and topology of three-manifolds Princeton University. ,(1979)
S. V. Levy, M. S. Paterson, J. W. Cannon, D. F. Holt, W. P. Thurston, David B. A. Epstein, Word processing in groups ,(1992)
Egbert Brieskorn, Kyoji Saito, Artin-Gruppen und Coxeter-Gruppen Inventiones Mathematicae. ,vol. 17, pp. 245- 271 ,(1972) , 10.1007/BF01406235
Tammo tom Dieck, Categories of rooted cylinder ribbons and their representations Journal für die reine und angewandte Mathematik (Crelles Journal). ,vol. 1998, pp. 35- 63 ,(1998) , 10.1515/CRLL.1998.010
Tadeusz Dobrowolski, The compact Z-set property in convex sets Topology and its Applications. ,vol. 23, pp. 163- 172 ,(1986) , 10.1016/0166-8641(86)90038-6
Sofia Lambropoulou, Knot theory related to generalized and cyclotomic Hecke algebras of type ℬ Journal of Knot Theory and Its Ramifications. ,vol. 08, pp. 621- 658 ,(1999) , 10.1142/S0218216599000419
Ruth Charney, Artin groups of finite type are biautomatic Mathematische Annalen. ,vol. 292, pp. 671- 683 ,(1992) , 10.1007/BF01444642
Peter Scott, The Geometries of 3-Manifolds Bulletin of the London Mathematical Society. ,vol. 15, pp. 401- 487 ,(1983) , 10.1112/BLMS/15.5.401